A Decomposition-Coordination Method for Complex Multi-Objective Systems

The generation of Pareto optimal solutions for complex systems with multiple conflicting objectives can be easier if the problem can be decomposed and solved as a set of smaller coordinated subproblems. In this paper, a new decomposition-coordination method is proposed, where the global problem is partitioned into subsystems on the basis of the connection structure of the mathematical model, assigning a relative importance to each of them. In order to obtain Pareto optimal solutions for the global system, the aforementioned subproblems are coordinated taking into account their relative importance. The scheme that has been developed is an iterative one, and the global efficient solutions are found through a continuous information exchange process between the coordination level (upper level) and the subsystem level (lower level). Computational experiments on several randomly generated problem instances show that the suggested algorithm produces efficient solutions within reasonable computational times.

[1]  Mariano Luque,et al.  Hierarchical generation of Pareto optimal solutions in large-scale multiobjective systems , 2002, Comput. Oper. Res..

[2]  Børge Obel,et al.  Tactical coordination in a multi-location and multi-stage operations structure: A model and a pharmaceutical company case☆ , 2007 .

[3]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[4]  Alex H. B. Duffy,et al.  Coordination Approaches and Systems – Part I: A Strategic Perspective , 2000 .

[5]  Yacov Y. Haimes,et al.  Hierarchical generating method for large-scale multiobjective systems , 1987 .

[6]  Rudolf Vetschera,et al.  Decentralized planning for multiobjective resource allocation and project selection , 2003 .

[7]  Hector A. Rosales-Macedo Nonlinear Programming: Theory and Algorithms (2nd Edition) , 1993 .

[8]  Elliot R. Lieberman Hierarchical Multiobjective Programming an Overview , 1992 .

[9]  Nasser Sadati,et al.  A new hierarchical approach for optimal control of robot manipulators , 2004, IEEE Conference on Robotics, Automation and Mechatronics, 2004..

[10]  M. Mesarovic,et al.  Theory of Hierarchical, Multilevel, Systems , 1970 .

[11]  L. Lasdon,et al.  A multi-level technique for optimization , 1965 .

[12]  Hirotaka Nakayama,et al.  Theory of Multiobjective Optimization , 1985 .

[13]  Alex H. B. Duffy,et al.  Coordination Approaches and Systems – Part II: An Operational Perspective , 2000 .

[14]  M. Wiecek,et al.  Lagrangian Coordination and Analytical Target Cascading: Solving ATC-Decomposed Problems with Lagrangian Duality , 2005 .

[15]  F. van Keulen,et al.  Numerical Comparison of Multi-Level Optimization Techniques , 2007 .

[16]  Yacov Y. Haimes,et al.  Hierarchical multiobjective analysis for large-scale systems: Review and current status , 1988, Autom..

[17]  Li Ailing A Study on the Large-scale System Decomposition—Coordination Method Used in Optimal Operation of a Hydroelectric System , 2004 .

[18]  Stanley Zionts,et al.  Multiple criteria decision making : proceedings of the Ninth international conference : theory and applications in business, industry, and government , 1992 .

[19]  Fouad Ben Abdelaziz,et al.  IMGD: an interactive method for multiobjective group decision aid , 2004, J. Oper. Res. Soc..

[20]  Yacov Y. Haimes,et al.  Hierarchical Multiobjective Analysis for Large-Scale Systems: Current Status , 1987 .

[21]  Jianxun Sun,et al.  The research of the decomposition‐coordination method of multidisciplinary collaboration design optimization , 2005 .

[22]  Margaret M. Wiecek,et al.  Interactive Coordination of Objective Decompositions in Multiobjective Programming , 2008, Manag. Sci..

[23]  Rafael Caballero,et al.  An Algorithmic Package for the Resolution and Analysis of Convex Multiple Objective Problems , 1997 .

[24]  K. Tarvainen,et al.  Generating pareto-optimal alternatives by a nonfeasible hierarchical method , 1994 .

[25]  Madan G. Singh,et al.  Systems: Decomposition, optimisation, and control , 1978 .

[26]  Marian Leimbach,et al.  A modular approach to Integrated Assessment modeling , 2005 .

[27]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[28]  J. B. Rosen,et al.  Construction of nonlinear programming test problems , 1965 .

[29]  Christina Bloebaum,et al.  Multi-objective pareto concurrent subspace optimization for multidisciplinary design , 2007 .

[30]  Kemper Lewis,et al.  Integrating linear physical programming within collaborative optimization for multiobjective multidisciplinary design optimization , 2005 .