Tableau-based characterization and theorem proving for default logic

In this paper, we present a new method for computing extensions and for deriving formulae from a default theory. It is based on the semantic tableaux method and works for default theories with a finite set of defaults that are formulated over a decidable subset of first-order logic. We prove that all extensions (if any) of a default theory can be produced by constructing the semantic tableau ofone formula built from the general laws and the default consequences. This result allows us to describe an algorithm that provides extensions if there are any, and to decide if there are none. Moreover, the method gives a necessary and sufficient criterion for the existence of extensions of default theories with finitely many defaults provided they are formulated on a decidable subset of FOL.

[1]  Nicola Olivetti Tableaux and sequent calculus for minimal entailment , 2004, Journal of Automated Reasoning.

[2]  Philippe Besnard,et al.  Supposition-Based Logic for Automated Nonmontonic Reasoning , 1988, CADE.

[3]  Pierre Siegel,et al.  Saturation, Nonmonotonic Reasoning and the Closed-World Assumption , 1985, Artif. Intell..

[4]  R. Smullyan First-Order Logic , 1968 .

[5]  C. Morgan,et al.  Automated Theorem Proving in Non-Classical Logics , 1995 .

[6]  Patrice Quinton,et al.  A Theorem-Prover for a Decidable Subset of Default Logic , 1983, AAAI.

[7]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[8]  Frank M. Brown,et al.  A Commonsense Theory of Nonmonotonic Reasoning , 1986, CADE.

[9]  Vladimir Lifschitz,et al.  Computing Circumscription , 1985, IJCAI.

[10]  Witold Łukaszewicz Considerations on default logic: an alternative approach 1 , 1988 .

[11]  Camilla Schwind,et al.  A Tableau-Based Theorem Prover for a Decidable Subset of Default Logic , 1990, CADE.

[12]  Matthew L. Ginsberg A Circumscriptive Theorem Prover , 1989, Artif. Intell..

[13]  Victor W. Marek,et al.  Autoepistemic logic , 1991, JACM.

[14]  Victor W. Marek,et al.  The Pure Logic of Necessitation , 1992, J. Log. Comput..

[15]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[16]  Kurt Konolige,et al.  Computing the Extensions of Autoepistemic and Default Logics with a Truth Maintenance System , 1990, AAAI.

[17]  David W. Etherington Formalizing Nonmonotonic Reasoning Systems , 1987, Artif. Intell..

[18]  Ilkka Niemelä,et al.  Decision Procedure for Autoepistemic Logic , 1988, CADE.

[19]  Marco A. Casanova,et al.  Contributions to a Proof Theory for Generic Defaults , 1990, ECAI.

[20]  Teodor C. Przymusinski An Algorithm to Compute Circumscription , 1989, Artif. Intell..

[21]  Camilla Schwind,et al.  A Theorem Prover for Action Performance , 1988, European Conference on Artificial Intelligence.

[22]  Gerhard Brewka,et al.  Handling Partially Ordered Defaults in TMS , 1991, ECSQARU.

[23]  V. Risch Caractérisation en termes de tableaux sémantiques pour la logique des défauts au sens de Lukaszewicz , 1993 .

[24]  François Lévy Computing Extensions of Default Theories , 1991, ECSQARU.

[25]  F. Ramsey The foundations of mathematics , 1932 .