Computing Min-Max Regret Solutions in Possibilistic Combinatorial Optimization Problems

In this chapter we discuss a wide class of combinatorial optimization problems with a linear sum and a bottleneck cost function. We first investigate the case when the weights in the problem are modeled as closed intervals. We show how the notion of optimality can be extended by using a concept of a deviation interval. In order to choose a solution we adopt a robust approach. We seek a solution that minimizes the maximal regret, that is the maximal deviation from optimum over all weight realizations, called scenarios, which may occur. We then explore the case in which the weights are specified as fuzzy intervals. We show that under fuzzy weights the problem has an interpretation consistent with possibility theory. Namely, fuzzy weights induce a possibility distribution over the scenario set and the possibility and necessity measures can be used to extend the optimality evaluation and the min-max regret approach.

[1]  Pascal Van Hentenryck,et al.  On the complexity of the robust spanning tree problem with interval data , 2004, Oper. Res. Lett..

[2]  Paolo M. Camerini The Min-Max Spanning Tree Problem and Some Extensions , 1978, Inf. Process. Lett..

[3]  Hande Yaman,et al.  The robust spanning tree problem with interval data , 2001, Oper. Res. Lett..

[4]  Adam Kasperski,et al.  Using Gradual Numbers for Solving Fuzzy-Valued Combinatorial Optimization Problems , 2007, IFSA.

[5]  Adam Kasperski,et al.  On combinatorial optimization problems on matroids with uncertain weights , 2007, Eur. J. Oper. Res..

[6]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[7]  Abraham P. Punnen A fast algorithm for a class of bottleneck problems , 2005, Computing.

[8]  Didier Dubois,et al.  On latest starting times and floats in activity networks with ill-known durations , 2003, Eur. J. Oper. Res..

[9]  Eduardo Conde,et al.  An improved algorithm for selecting p items with uncertain returns according to the minmax-regret criterion , 2004, Math. Program..

[10]  David Fernández-Baca,et al.  Solving Parametric Problems on Trees , 1989, J. Algorithms.

[11]  Roberto Montemanni,et al.  A Benders decomposition approach for the robust spanning tree problem with interval data , 2006, Eur. J. Oper. Res..

[12]  Timothy M. Chan Finding the shortest bottleneck edge in a parametric minimum spanning tree , 2005, SODA '05.

[13]  Howard Raiffa,et al.  Games and Decisions: Introduction and Critical Survey. , 1958 .

[14]  Masahiro Inuiguchi On Possibilistic/Fuzzy Optimization , 2007, IFSA.

[15]  Pawel Zielinski,et al.  The computational complexity of the relative robust shortest path problem with interval data , 2004, Eur. J. Oper. Res..

[16]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[17]  Didier Dubois,et al.  Interval Analysis in Scheduling , 2005, CP.

[18]  Igor Averbakh,et al.  On the complexity of minmax regret linear programming , 2005, Eur. J. Oper. Res..

[19]  Masahiro Inuiguchi,et al.  Robust optimization under softness in a fuzzy linear programming problem , 1998, Int. J. Approx. Reason..

[20]  Roberto Montemanni,et al.  A branch and bound algorithm for the robust spanning tree problem with interval data , 2002, Eur. J. Oper. Res..

[21]  Daniel Vanderpooten,et al.  Complexity of the min-max and min-max regret assignment problems , 2005, Oper. Res. Lett..

[22]  Robert E. Tarjan,et al.  Faster parametric shortest path and minimum-balance algorithms , 1991, Networks.

[23]  Didier Dubois,et al.  Possibility Theory - An Approach to Computerized Processing of Uncertainty , 1988 .

[24]  Adam Kasperski,et al.  On the existence of an FPTAS for minmax regret combinatorial optimization problems with interval data , 2007, Oper. Res. Lett..

[25]  Egon Balas,et al.  Integer Programming , 2021, Encyclopedia of Optimization.

[26]  Igor Averbakh Minmax regret solutions for minimax optimization problems with uncertainty , 2000, Oper. Res. Lett..

[27]  Peter van Beek,et al.  Principles and Practice of Constraint Programming - CP 2005, 11th International Conference, CP 2005, Sitges, Spain, October 1-5, 2005, Proceedings , 2005, CP.

[28]  Roberto Montemanni,et al.  A branch and bound algorithm for the robust shortest path problem with interval data , 2004, Oper. Res. Lett..

[29]  Abraham P. Punnen A linear time algorithm for the maximum capacity path problem , 1991 .

[30]  Steven Vajda,et al.  Games and Decisions. By R. Duncan Luce and Howard Raiffa. Pp. xi, 509. 70s. 1957. (J Wiley & Sons) , 1959, The Mathematical Gazette.

[31]  Michael O. Ball,et al.  Bicriteria product design optimization: An efficient solution procedure using AND/OR trees , 2002 .

[32]  Daniel Vanderpooten,et al.  Complexity of the Min-Max (Regret) Versions of Cut Problems , 2005, ISAAC.

[33]  Adam Kasperski,et al.  Minmax regret approach and optimality evaluation in combinatorial optimization problems with interval and fuzzy weights , 2010, Eur. J. Oper. Res..

[34]  Robert E. Tarjan,et al.  Algorithms for Two Bottleneck Optimization Problems , 1988, J. Algorithms.

[35]  Hande Yaman,et al.  The Robust Shortest Path Problem with Interval Data , 2012 .

[36]  Adam Kasperski,et al.  Discrete Optimization with Interval Data - Minmax Regret and Fuzzy Approach , 2008, Studies in Fuzziness and Soft Computing.

[37]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[38]  Witold Pedrycz,et al.  Foundations of Fuzzy Logic and Soft Computing, 12th International Fuzzy Systems Association World Congress, IFSA 2007, Cancun, Mexico, June 18-21, 2007, Proceedings , 2007, IFSA.

[39]  Daniel Vanderpooten,et al.  Min-max and min-max regret versions of combinatorial optimization problems: A survey , 2009, Eur. J. Oper. Res..

[40]  R. Wets,et al.  Stochastic programming , 1989 .

[41]  Adam Kasperski,et al.  An approximation algorithm for interval data minmax regret combinatorial optimization problems , 2006, Inf. Process. Lett..

[42]  Igor Averbakh,et al.  On the complexity of a class of combinatorial optimization problems with uncertainty , 2001, Math. Program..

[43]  Pascal Van Hentenryck,et al.  A Constraint Satisfaction Approach to the Robust Spanning Tree Problem with Interval Data , 2002, UAI.