The thermal stability in air of hot-pressed diboride matrix composites for uses at ultra-high temperatures

[1]  A. Bellosi,et al.  The resistance to oxidation of an HfB2–SiC composite , 2005 .

[2]  A. Bellosi,et al.  Efficacy of HfN as sintering aid in the manufacture of ultrahigh-temperature metal diborides-matrix ceramics , 2004 .

[3]  Alida Bellosi,et al.  Microstructure and Properties of an HfB2‐SiC Composite for Ultra High Temperature Applications , 2004 .

[4]  Alida Bellosi,et al.  Oxidation of ZrB2-Based Ceramics in Dry Air , 2003 .

[5]  A. Bellosi,et al.  Advances in microstructure and mechanical properties of zirconium diboride based ceramics , 2003 .

[6]  A. Bellosi,et al.  Fabrication and Properties of Zirconium Diboride-based Ceramics for UHT Applications , 2003 .

[7]  J. Yang,et al.  Thermal stability of refractory carbide/boride composites , 2002 .

[8]  Jonathan A. Salem,et al.  Evaluation of ultra-high temperature ceramics foraeropropulsion use , 2002 .

[9]  Mark M. Opeka,et al.  Mechanical, Thermal, and Oxidation Properties of Refractory Hafnium and zirconium Compounds , 1999 .

[10]  P. Gnoffo Planetary-Entry Gas Dynamics , 1999 .

[11]  A. Bronson,et al.  Compatibility of refractory metal boride/oxide composites at ultrahigh temperatures , 1992 .

[12]  H. Pastor Metallic Borides: Preparation of Solid Bodies — Sintering Methods and Properties of Solid Bodies , 1977 .

[13]  Vlado I. Matkovich,et al.  Boron and Refractory Borides , 1977 .

[14]  H. C. Graham,et al.  The High‐Temperature Oxidation Behavior of a HfB2 + 20 v / o SiC Composite , 1975 .