Formation of Brightly Luminescent MoS2 Nanoislands from Multilayer Flakes via Plasma Treatment and Laser Exposure

A robust and reliable method for enhancing the photoluminescence (PL) of multilayer MoS2 is demonstrated using an oxygen plasma treatment process followed by laser exposure. Here, the plasma and laser treatments result in an indirect-to-direct band gap transition. The oxygen plasma creates a slight decoupling of the layers and converts some of the MoS2 to MoO3. Subsequent laser irradiation further oxidizes the MoS2 to MoO3, as confirmed via X-ray photoelectron spectroscopy, and results in localized regions of brightly luminescent MoS2 monolayer triangular islands as seen in high-resolution transmission electron microscopy images. The PL lifetimes are found to decrease from 494 to 190 ps after plasma and laser treatment, reflecting the smaller size of the MoS2 grains/regions. Atomic force microscopic imaging shows a 2 nm increase in thickness of the laser-irradiated regions, which provides further evidence of the MoS2 being converted to MoO3.

[1]  Husam N. Alshareef,et al.  High‐Performance Monolayer MoS2 Films at the Wafer Scale by Two‐Step Growth , 2019, Advanced Functional Materials.

[2]  E. Pop,et al.  Plasmon-Resonant Enhancement of Photocatalysis on Monolayer WSe2 , 2019, ACS Photonics.

[3]  Yaokun Pang,et al.  Triboiontronic Transistor of MoS2 , 2018, Advanced materials.

[4]  Kenji Watanabe,et al.  Probing the Electronic Properties of Monolayer MoS2 via Interaction with Molecular Hydrogen , 2018, Advanced Electronic Materials.

[5]  N. Tagmatarchis,et al.  Molecular Functionalization of Two-Dimensional MoS2 Nanosheets. , 2018, Chemistry.

[6]  Shui-Tong Lee,et al.  In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal , 2018, Nature.

[7]  B. Jonker,et al.  Double Indirect Interlayer Exciton in a MoSe2/WSe2 van der Waals Heterostructure. , 2018, ACS nano.

[8]  Noah D Bronstein,et al.  Balancing the Hydrogen Evolution Reaction, Surface Energetics, and Stability of Metallic MoS2 Nanosheets via Covalent Functionalization. , 2018, Journal of the American Chemical Society.

[9]  S. Cronin,et al.  Radiation-induced direct bandgap transition in few-layer MoS2 , 2017 .

[10]  A. Jang,et al.  Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe2/WSe2 van der Waals Heterostructures. , 2017, ACS nano.

[11]  Moon J. Kim,et al.  MoS2 transistors with 1-nanometer gate lengths , 2016, Science.

[12]  S. Cronin,et al.  Charge neutral MoS2 field effect transistors through oxygen plasma treatment , 2016, 1607.07500.

[13]  S. Cronin,et al.  Layer Control of WSe2 via Selective Surface Layer Oxidation. , 2016, ACS nano.

[14]  Wei Chen,et al.  Rolling Up a Monolayer MoS2 Sheet. , 2016, Small.

[15]  S. Khondaker,et al.  Bandgap Engineering of MoS2 Flakes via Oxygen Plasma: A Layer Dependent Study , 2016 .

[16]  Jaesung Lee,et al.  Effects of γ-ray radiation on two-dimensional molybdenum disulfide (MoS2) nanomechanical resonators , 2016 .

[17]  E. Yablonovitch,et al.  Near-unity photoluminescence quantum yield in MoS2 , 2015, Science.

[18]  Alexey Chernikov,et al.  Probing Interlayer Interactions in Transition Metal Dichalcogenide Heterostructures by Optical Spectroscopy: MoS2/WS2 and MoSe2/WSe2. , 2015, Nano letters.

[19]  Arka Majumdar,et al.  Monolayer semiconductor nanocavity lasers with ultralow thresholds , 2015, Nature.

[20]  R. Lake,et al.  Direct Bandgap Transition in Many‐Layer MoS2 by Plasma‐Induced Layer Decoupling , 2015, Advanced materials.

[21]  Zhenghong Lu,et al.  Impact of lattice distortion and electron doping on α-MoO3 electronic structure , 2014, Scientific Reports.

[22]  Bin Wang,et al.  Electrical Stress and Total Ionizing Dose Effects on ${\hbox {MoS}}_{2}$ Transistors , 2014, IEEE Transactions on Nuclear Science.

[23]  P. Feng,et al.  Multilayer MoS2 transistors enabled by a facile dry-transfer technique and thermal annealing , 2014 .

[24]  R. Haasch,et al.  2-D Material Molybdenum Disulfide Analyzed by XPS , 2014 .

[25]  F. Miao,et al.  Strong photoluminescence enhancement of MoS(2) through defect engineering and oxygen bonding. , 2014, ACS nano.

[26]  S. Khondaker,et al.  Photoluminescence Quenching in Single-layer MoS2 via Oxygen Plasma Treatment , 2014, 1405.0646.

[27]  Aaron M. Jones,et al.  Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures , 2014, Nature Communications.

[28]  Pooi See Lee,et al.  Plasma modified MoS(2) nanoflakes for surface enhanced raman scattering. , 2014, Small.

[29]  Woong-Ki Hong,et al.  Irradiation effects of high-energy proton beams on MoS2 field effect transistors. , 2014, ACS nano.

[30]  Aaron M. Jones,et al.  Control of two-dimensional excitonic light emission via photonic crystal , 2013, 1311.6071.

[31]  K. Novoselov,et al.  Control of radiation damage in MoS(2) by graphene encapsulation. , 2013, ACS nano.

[32]  J. Grossman,et al.  Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons , 2013, Scientific Reports.

[33]  Y. Miyauchi,et al.  Tunable photoluminescence of monolayer MoS₂ via chemical doping. , 2013, Nano letters.

[34]  Feng Ding,et al.  Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe₂ , TaS₂ , and TaSe₂. , 2013, Small.

[35]  Woong Choi,et al.  Improved growth behavior of atomic-layer-deposited high-k dielectrics on multilayer MoS2 by oxygen plasma pretreatment. , 2013, ACS applied materials & interfaces.

[36]  M. Bender,et al.  Radiation hardness of graphene and MoS2 field effect devices against swift heavy ion irradiation , 2013, 1304.3614.

[37]  Aaron M. Jones,et al.  Electrical control of neutral and charged excitons in a monolayer semiconductor , 2012, Nature Communications.

[38]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[39]  S. Cronin,et al.  Effects of Proton Radiation-Induced Defects on Optoelectronic Properties of MoS2 , 2019, IEEE Transactions on Nuclear Science.

[40]  S. Cronin,et al.  Charge neutral MoS 2 field effect transistors through oxygen plasma treatment , 2016 .

[41]  D. Tsai,et al.  Trilayered MoS$_{\bf 2}$ Metal –Semiconductor–Metal Photodetectors: Photogain and Radiation Resistance , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[42]  Zenghui Wang,et al.  Multilayer MoS 2 transistors enabled by a facile dry-transfer technique and thermal annealing , 2014 .