The excess far-infrared emission of active galactic nuclei in the local Universe

We have cross-correlated the Sloan Digital Sky Survey (SDSS) second data release spectroscopic galaxy sample with the IRAS Faint Source Catalogue (FSC). Optical emission line ratios are used to classify the galaxies with reliable IRAS 60- and 100-μm detections into active galactic nuclei (AGN) and normal star-forming galaxies. We then create subsamples of normal galaxies and AGN that are very closely matched in terms of key physical properties such as stellar mass, redshift, size, concentration and mean stellar age (as measured by absorption line indicators in the SDSS spectra). We then quantify whether there are systematic differences between the infrared (IR) luminosities of the galaxies and the AGN in the matched subsamples. We find that the AGN exhibit a significant excess in far-infrared (FIR) emission relative to the star-forming galaxies in our sample. The excesses at 60 and 100 μm are 0.21 ± 0.03 and 0.12 ± 0.035 dex in log L 60 /M * and log L 100 /M * , respectively. We then discuss whether the FIR excess is produced by radiation from the active nucleus that is absorbed by dust or, alternatively, by an extra population of young stars that is not detectable at optical wavelengths.

[1]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[2]  G. Miley,et al.  Infrared Seyferts: a new population of active galaxies? , 1984 .

[3]  G. Rieke,et al.  10 to the 12th solar luminosity starbursts and shocked molecular hydrogen in the colliding galaxies ARP 220 (= IC 4553) and NGC 6240 , 1985 .

[4]  G. Helou,et al.  IRAS observations of galaxies in the Virgo cluster area , 1988 .

[5]  G. Neugebauer,et al.  Warm ultraluminous galaxies in the IRAS survey - The transition from galaxy to quasar? , 1988 .

[6]  Michael Rowan-Robinson,et al.  Models for infrared emission from IRAS galaxies , 1989 .

[7]  George K. Miley,et al.  On the nature and implications of starburst-driven galactic superwinds , 1990 .

[8]  T. Thuan,et al.  Compact starbursts in ultraluminous infrared galaxies , 1991 .

[9]  Julian H. Krolik,et al.  Infrared spectra of obscuring dust tori around active galactic nuclei. I - Calculational method and basic trends , 1992 .

[10]  L. Danese,et al.  Thick tori around active galactic nuclei: a comparison of model predictions with observations of the infrared continuum and silicate features , 1994 .

[11]  D. Sanders,et al.  LUMINOUS INFRARED GALAXIES , 1996 .

[12]  D. Kunze,et al.  What Powers Ultraluminous IRAS Galaxies? , 1997, astro-ph/9711255.

[13]  J. Kneib,et al.  Erratum: The history of star formation in dusty galaxies , 1998, astro-ph/9806062.

[14]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[15]  M. Rowan-Robinson,et al.  The Star Formation History of the Universe: An Infrared Perspective , 2001 .

[16]  W. Brandt,et al.  Submillimeter Properties of the 1 Ms Chandra Deep Field-North X-Ray Sample , 2001, astro-ph/0107252.

[17]  Empirical diagnostics of the starburst-agn connection , 2001, astro-ph/0104186.

[18]  V. Narayanan,et al.  Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data , 2001, astro-ph/0107201.

[19]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[20]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[21]  The Host Galaxies of AGN , 2003, astro-ph/0304239.

[22]  R. Nichol,et al.  The dependence of star formation history and internal structure on stellar mass for 105 low‐redshift galaxies , 2002, astro-ph/0205070.

[23]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[24]  Connecting the cosmic infrared background to the X-ray background , 2004, astro-ph/0403381.

[25]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[26]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[27]  J. Brinchmann,et al.  Present-Day Growth of Black Holes and Bulges: The Sloan Digital Sky Survey Perspective , 2004, astro-ph/0406218.

[28]  Aperture Effects on Star Formation Rate, Metallicity, and Reddening , 2005, astro-ph/0501229.