Transformations of diffusion and Schrödinger processes
暂无分享,去创建一个
[1] M. Nagasawa. Markov process with creation and annihilation , 1969 .
[2] Kiyosi Itô,et al. Transformation of Markov processes by multiplicative functionals , 1965 .
[3] An application of flows to time shift and time reversal in stochastic processes , 1985 .
[4] E. B. Dynkin,et al. Transformations of Markov Processes Connected with Additive Functionals , 1961 .
[5] A. Shiryayev,et al. Statistics of Random Processes I: General Theory , 1984 .
[6] M. Nagasawa. The adjoint process of a diffusion with reflecting barrier , 1961 .
[7] Y. Oshima,et al. On a transformation of symmetric markov process and recurrence property , 1987 .
[8] A. A. Novikov. On moment inequalities and identities for stochastic integrals , 1973 .
[9] A. Beurling,et al. An Automorphism of Product Measures , 1960 .
[10] M. Nagasawa. Segregation of a population in an environment , 1980 .
[11] S. E. Kuznetsov. Construction of Markov Processes with Random Times of Birth and Death , 1974 .
[12] Joanna Mitro. Dual Markov processes: Construction of a useful auxiliary process , 1979 .
[13] 丸山 儀四郎,et al. On the Transition Probability Functions of the Markov Process , 1954 .
[14] L. Rogers. Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .
[15] M. Nagasawa. Time Reversions of Markov Processes , 1964, Nagoya Mathematical Journal.
[16] A. Kolmogoroff,et al. Zur Umkehrbarkeit der statistischen Naturgesetze , 1937 .
[17] Edward Nelson. Derivation of the Schrodinger equation from Newtonian mechanics , 1966 .
[18] E. Schrödinger. Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quantique , 1932 .
[19] R. Getoor,et al. Additive functionals and entrance laws , 1985 .
[20] A. Friedman. Partial Differential Equations of Parabolic Type , 1983 .
[21] Hiroshi Tanaka,et al. Diffusion with interactions and collisions between coloured particles and the propagation of chaos , 1987 .
[22] P. Meyer,et al. Probabilities and potential C , 1978 .
[23] B. Jamison. The Markov processes of Schrödinger , 1975 .
[24] Hiroshi Tanaka,et al. A diffusion process in a singular mean-drift-field , 1985 .
[25] Macroscopic, intermediate, microscopic and mesons , 1986 .
[26] B. Simon,et al. Brownian motion and harnack inequality for Schrödinger operators , 1982 .
[27] H. Kunita,et al. NOTES ON TRANSFORMATIONS OF MARKOV PROCESSES CONNECTED WITH MULTIPLICATIVE FUNCTIONALS , 1963 .
[28] P. Blanchard,et al. Diffusion processes with singular drift fields , 1987 .
[30] I. V. Girsanov. On Transforming a Certain Class of Stochastic Processes by Absolutely Continuous Substitution of Measures , 1960 .
[31] J. Zambrini. Variational processes and stochastic versions of mechanics , 1986 .
[32] A. Kolmogoroff. Zur Theorie der Markoffschen Ketten , 1936 .
[33] J. M. Clark,et al. The Representation of Functionals of Brownian Motion by Stochastic Integrals , 1970 .
[34] Hiroshi Tanaka,et al. Propagation of chaos for diffusing particles of two types with singular mean field interaction , 1986 .
[35] R. Ho,et al. A remark on the connection between stochastic mechanics and the heat equation , 1974 .
[36] J. Doob. Classical potential theory and its probabilistic counterpart , 1984 .
[37] J. Glover,et al. Constructing Markov processes with random times of birth and death , 1986 .
[38] Weian Zheng,et al. Tightness results for laws of diffusion processes application to stochastic mechanics , 1985 .
[39] Zambrini. Stochastic mechanics according to E. Schrödinger. , 1986, Physical review. A, General physics.
[40] R. Carmona. Processus de diffusion gouverne par la forme de dirichlet de l'operateur de Schrödinger , 1979 .