Two-Dimensional Electronics — Prospects and Challenges

For about a decade, 2D (two-dimensional) materials have represented one of the hottest directions in solid-state research.[...]

[1]  Deji Akinwande,et al.  Two-dimensional flexible nanoelectronics , 2014, Nature Communications.

[2]  F. Schwierz,et al.  Simulation of 50-nm Gate Graphene Nanoribbon Transistors , 2016 .

[3]  Yaser M. Banadaki,et al.  Effect of Edge Roughness on Static Characteristics of Graphene Nanoribbon Field Effect Transistor , 2016 .

[4]  Dimensional Quantization and the Resonance Concept of the Low-Threshold Field Emission , 2015 .

[5]  Thomas Zimmer,et al.  Electrical Compact Modeling of Graphene Base Transistors , 2015 .

[6]  F Schwierz,et al.  Two-dimensional materials and their prospects in transistor electronics. , 2015, Nanoscale.

[7]  K. K. Singh,et al.  Two-Dimensional Materials for Sensing: Graphene and Beyond , 2015 .

[8]  Thomas Heine,et al.  On the Stability and Electronic Structure of Transition-Metal Dichalcogenide Monolayer Alloys Mo1−xXxS2−ySey with X = W, Nb , 2015 .

[9]  M. Lemme,et al.  Graphene and Two-Dimensional Materials for Optoelectronic Applications , 2016 .

[10]  Keith A. Jenkins,et al.  Graphene technology with inverted-T gate and RF passives on 200 mm platform , 2011, 2011 International Electron Devices Meeting.

[11]  P. Miró,et al.  An atlas of two-dimensional materials. , 2014, Chemical Society reviews.

[12]  Herbert Kroemer Expert opinion: Nano-whatever: Do we really know where we are heading? , 2005 .

[13]  H. Kroemer Nano-Whatever: Do We Really Know Where We Are Heading? , 2009 .

[14]  Fahim Ferdous Hossain,et al.  Equilibrium Molecular Dynamics (MD) Simulation Study of Thermal Conductivity of Graphene Nanoribbon: A Comparative Study on MD Potentials , 2015 .

[15]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[16]  David Perez de Lara,et al.  Enhanced Visibility of MoS2, MoSe2, WSe2 and Black Phosphorus: Making Optical Identification of 2D Semiconductors Easier , 2015 .

[17]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[18]  F. Schwierz,et al.  Two-dimensional materials for electronic applications , 2014 .

[19]  Aachen,et al.  A Graphene Field-Effect Device , 2007, IEEE Electron Device Letters.

[20]  Frank Schwierz,et al.  Graphene Transistors: Status, Prospects, and Problems , 2013, Proceedings of the IEEE.

[21]  David Perez de Lara,et al.  Enhanced Visibility of MoS 2 , MoSe 2 , WSe 2 and Black-Phosphorus : Making Optical Identification of 2 D Semiconductors Easier , 2015 .

[22]  Mikael Östling,et al.  Scalable Fabrication of 2D Semiconducting Crystals for Future Electronics , 2015 .

[23]  C. Berger,et al.  Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. , 2004, cond-mat/0410240.

[24]  Jongho Lee,et al.  Towards the Realization of Graphene Based Flexible Radio Frequency Receiver , 2015 .

[25]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[26]  刘楠 Graphene , 2012 .

[27]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[28]  T. Natsuki Theoretical Analysis of Vibration Frequency of Graphene Sheets Used as Nanomechanical Mass Sensor , 2015 .

[29]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.