An informational view of classical logic

We present an informational view of classical propositional logic that stems from a kind of informational semantics whereby the meaning of a logical operator is specified solely in terms of the information that is actually possessed by an agent. In this view the inferential power of logical agents is naturally bounded by their limited capability of manipulating virtual information, namely information that is not implicitly contained in the data. Although this informational semantics cannot be expressed by any finitely-valued matrix, it can be expressed by a non-deterministic 3-valued matrix that was first introduced by W.V.O. Quine, but ignored by the logical community. Within the general framework presented in [21] we provide an in-depth discussion of this informational semantics and a detailed analysis of a specific infinite hierarchy of tractable approximations to classical propositional logic that is based on it. This hierarchy can be used to model the inferential power of resource-bounded agents and admits of a uniform proof-theoretical characterization that is half-way between a classical version of Natural Deduction and the method of semantic tableaux.

[1]  Arnon Avron,et al.  Canonical Propositional Gentzen-Type Systems , 2001, IJCAR.

[2]  Marco Schaerf,et al.  Tractable Reasoning via Approximation , 1995, Artif. Intell..

[3]  Hector J. Levesque,et al.  A Logic of Implicit and Explicit Belief , 1984, AAAI.

[4]  Marko Becker,et al.  What Is A Logical System , 2016 .

[5]  Reiner Hähnle,et al.  Tableaux for Many-Valued Logics , 1999 .

[6]  Mary Sheeran,et al.  A Tutorial on Stålmarck's Proof Procedure for Propositional Logic , 2000, Formal Methods Syst. Des..

[7]  Ronald Fagin,et al.  Belief, Awareness, and Limited Reasoning. , 1987, Artif. Intell..

[8]  Marcello D'Agostino,et al.  Investigations into the complexity of some propositional calculi , 1990 .

[9]  J. Hintikka Logic, language-games and information : Kantian themes in the philosophy of logic , 1973 .

[10]  Mukesh Dalal Anytime Families of Tractable Propositional Reasoners Introduction , .

[11]  Marcelo Finger Towards Polynomial Approximations of Full Propositional Logic , 2004, SBIA.

[12]  Marcello D'Agostino,et al.  The enduring scandal of deduction , 2009, Synthese.

[13]  P. Dangerfield Logic , 1996, Aristotle and the Stoics.

[14]  Marcelo Finger Polynomial Approximations of Full Propositional Logic via Limited Bivalence , 2004, JELIA.

[15]  Dov M. Gabbay What is a logical system? An evolutionary view: 1964-2014 , 2014, Computational Logic.

[16]  Marcello D'Agostino,et al.  Semantic Information and the Trivialization of Logic: Floridi on the Scandal of Deduction , 2013, Inf..

[17]  Marcello D'Agostino,et al.  Tableau Methods for Classical Propositional Logic , 1999 .

[18]  Marcelo Finger,et al.  Approximate and Limited Reasoning: Semantics, Proof Theory, Expressivity and Control , 2004, J. Log. Comput..

[19]  Marcello D'Agostino Analytic Inference And The Informational Meaning Of The Logical Operators , 2014 .

[20]  David Ripley,et al.  Paraconsistent Logic , 2015, J. Philos. Log..

[21]  Marco Schaerf,et al.  Approximate Reasoning and Non-Omniscient Agents , 1992, TARK.

[22]  D. Gabbay,et al.  Handbook of tableau methods , 1999 .

[23]  Anthony Hunter,et al.  Paraconsistent logics , 1998 .

[24]  Marcello D'Agostino,et al.  The Taming of the Cut. Classical Refutations with Analytic Cut , 1994, J. Log. Comput..

[25]  Richard Statman,et al.  Intuitionistic Propositional Logic is Polynomial-Space Complete , 1979, Theor. Comput. Sci..

[26]  Willard Van Orman Quine,et al.  The Roots of Reference , 1974 .

[27]  Arnon Avron,et al.  Non-deterministic Multiple-valued Structures , 2005, J. Log. Comput..

[28]  Luciano Floridi,et al.  The enduring scandal of deduction Is propositional logic really uninformative ? , 2007 .

[29]  Kurt Konolige,et al.  What Awareness Isn't: A Sentential View of Implicit and Explicit Belief , 1986, TARK.

[30]  R. Rosenfeld Belief , 2012, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[31]  Mukesh Dalal Anytime clausal reasoning , 2004, Annals of Mathematics and Artificial Intelligence.

[32]  W. Carnielli,et al.  Logics of Formal Inconsistency , 2007 .

[33]  Nuel D. Belnap,et al.  A Useful Four-Valued Logic , 1977 .

[34]  Marcello D'Agostino,et al.  Classical Natural Deduction , 2005, We Will Show Them!.

[35]  Krysia Broda,et al.  Tableau Methods for Substructural Logics , 1999 .

[36]  Rohit Parikh,et al.  SENTENCES, BELIEF AND LOGICAL OMNISCIENCE, OR WHAT DOES DEDUCTION TELL US? , 2008, The Review of Symbolic Logic.

[37]  Marco Volpe,et al.  Bivalent semantics, generalized compositionality and analytic classic-like tableaux for finite-valued logics , 2014, Theor. Comput. Sci..

[38]  Arnon Avron,et al.  A Non-deterministic View on Non-classical Negations , 2005, Stud Logica.

[39]  Arne Borälv,et al.  The Industrial Success of Verification Tools Based on Stålmarck's Method , 1997, CAV.

[40]  Michael Dummett,et al.  The logical basis of metaphysics , 1991 .

[41]  Dov M. Gabbay,et al.  Semantics and proof-theory of depth bounded Boolean logics , 2013, Theor. Comput. Sci..

[42]  A. Avron,et al.  NON-DETERMINISTIC SEMANTICS FOR LOGICAL SYSTEMS , 2011 .

[43]  Dov M. Gabbay,et al.  Cut and Pay , 2006, J. Log. Lang. Inf..

[44]  Hector J. Levesque,et al.  Towards Tractable Inference for Resource-Bounded Agents , 2015, AAAI Spring Symposia.

[45]  Hykel Hosni,et al.  Tractable Depth-Bounded Logics and the Problem of Logical Omniscience , 2010 .

[46]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[47]  Marcello D'Agostino Informational Semantics, Non-Deterministic Matrices and Feasible Deduction , 2013, LSFA.

[48]  Mukesh Dalal Tractable Deduction in Knowledge Representation Systems , 1992, KR.

[49]  Giacomo Sillari,et al.  Models of Awareness , 2008 .

[50]  Nuel D. Belnap,et al.  How a Computer Should Think , 2019, New Essays on Belnap-­Dunn Logic.

[51]  Arnon Avron,et al.  Non-deterministic Matrices and Modular Semantics of Rules , 2005 .

[52]  Marcelo Finger,et al.  The universe of propositional approximations , 2006, Theor. Comput. Sci..

[53]  James M. Crawford,et al.  A Non-Deterministic Semantics for Tractable Inference , 1998, AAAI/IAAI.