Tunable slow light based on magnetic-fluid-infiltrated photonic crystal waveguides

Tunable slow light is proposed with photonic crystal structures infiltrated with magnetic fluids and/or applying externally magnetic field to the infiltrated devices. The W0.9 line-defect waveguide is formed within the heterostructure-slab with triangular lattice. The plane-wave expansion method is employed to investigate the slow light properties numerically. Two different criteria determining the bandwidth are adopted to quantify the slow light performance. Under the low dispersion (constant group index) criterion, the wavelength bandwidth ?? centered at a wavelength of ?0 = 1550?nm can be tuned in the range of 18.45?28.32?nm (4.73?9.28?nm) when the infiltrated magnetic fluid concentration increases from 0.25% to 1.75%. The corresponding average group index decreases from 21.39 (22.66) to 18.34 (18.04). Similarly, the local magnetic field factor (i.e.?the strength of externally applied magnetic field) can tune the wavelength bandwidth around 1550?nm (under the constant group index) and the average group index in the range of 6.60?nm?10.42?nm and 15.91?14.69, respectively. The results of this work may be helpful for experimentally designing and realizing the magnetic-fluid-based tunable slow light.

[1]  C Monat,et al.  Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration. , 2009, Optics express.

[2]  T. Krauss,et al.  Ultracompact and low-power optical switch based on silicon photonic crystals. , 2008, Optics letters.

[3]  Zhiping Zhou,et al.  Novel Kind of Semislow Light Photonic Crystal Waveguides With Large Delay-Bandwidth Product , 2010, IEEE Photonics Technology Letters.

[4]  Stefania Residori,et al.  Slow and fast light: basic concepts and recent advancements based on nonlinear wave-mixing processes , 2009 .

[5]  E. Liang,et al.  Optical properties of one-dimensional soft photonic crystals with ferrofluids , 2013 .

[6]  Andrea Melloni,et al.  The first decade of coupled resonator optical waveguides: bringing slow light to applications , 2012 .

[7]  S. Abdelaziz,et al.  All-fiber magnetic field sensors based on magnetic fluid-filled photonic crystal fibers. , 2013, Optics letters.

[8]  Guangzhong Wang,et al.  Magnetocontrollable photonic crystals based on colloidal ferrofluids , 2008 .

[9]  H. Hamann,et al.  Active control of slow light on a chip with photonic crystal waveguides , 2005, Nature.

[10]  Hao Zhang,et al.  Ferrofluid-Infiltrated Microstructured Optical Fiber Long-Period Grating , 2013, IEEE Photonics Technology Letters.

[11]  Toshihiko Baba,et al.  Stopping of light by the dynamic tuning of photonic crystal slow light device. , 2010, Optics express.

[12]  Hao Zhang,et al.  Magneto-optical tunability of magnetic fluid infiltrated microstructured optical fiber , 2013 .

[13]  Robert W. Boyd,et al.  Superluminal and Slow Light Propagation in a Room-Temperature Solid , 2003, Science.

[14]  Jing Liu,et al.  Electric field tuning of magnetically assembled photonic crystals , 2013 .

[15]  Michal Lipson,et al.  Breaking the delay-bandwidth limit in a photonic structure , 2007 .

[16]  T. Krauss,et al.  Real-space observation of ultraslow light in photonic crystal waveguides. , 2005, Physical review letters.

[17]  Toshihiko Baba,et al.  Slow light in photonic crystals , 2008 .

[18]  Chun Jiang,et al.  Photonic crystal slow light waveguides with large delay–bandwidth product , 2009 .

[19]  L. Vivien,et al.  Silicon slow light photonic crystals structures: present achievements and future trends , 2011 .

[20]  Dispersion-controlled slow light in photonic crystal waveguides , 2009, Proceedings of the Japan Academy. Series B, Physical and Biological Sciences.

[21]  John Philip,et al.  Magnetic field dependant backscattering of light in water based ferrofluid containing polymer covered Fe3O4 nanoparticles , 2013 .

[22]  Ilya Vitebskiy,et al.  Slow wave phenomena in photonic crystals , 2009, 0910.1220.

[23]  John Philip,et al.  An optical technique for fast and ultrasensitive detection of ammonia using magnetic nanofluids , 2013 .

[24]  Ning Wang,et al.  Generation and versatile transmission properties of ring-shaped beams based on thermal lens effect of magnetic fluids and ring-limited windows , 2013 .

[25]  Toshihiko Baba,et al.  Photonic crystal tunable slow light device integrated with multi-heaters , 2012 .

[26]  Thomas F. Krauss,et al.  Low loss propagation in slow light photonic crystal waveguides at group indices up to 60 , 2012 .

[27]  Xianfeng Chen,et al.  Relaxation property of the magnetic-fluid-based fiber-optic evanescent field modulator , 2007 .

[28]  Jing Ma,et al.  Demonstration of Ultraslow Modes in Asymmetric Line-Defect Photonic Crystal Waveguides , 2008, IEEE Photonics Technology Letters.

[29]  K. Kondo,et al.  Ultrafast slow-light tuning beyond the carrier lifetime using photonic crystal waveguides. , 2013, Physical review letters.

[30]  Tobias Kampfrath,et al.  Ultrafast tilting of the dispersion of a photonic crystal and adiabatic spectral compression of light pulses. , 2012, Physical review letters.

[31]  Jiping Huang,et al.  Enhanced nonlinear optical responses of materials: Composite effects , 2006 .

[32]  P. Colman,et al.  Blue self-frequency shift of slow solitons and radiation locking in a line-defect waveguide. , 2012, Physical review letters.

[33]  Shieh-Yueh Yang,et al.  Designing the refractive indices by using magnetic fluids , 2003 .

[34]  Toshihiko Baba,et al.  Continuously tunable slow-light device consisting of heater-controlled silicon microring array. , 2011, Optics express.

[35]  Low dispersion slow light waveguide with high coupling efficiency , 2009 .

[36]  Zhiping Zhou,et al.  Novel slow light waveguide with controllable delay-bandwidth product and utra-low dispersion. , 2010, Optics express.

[37]  Toshihiko Baba,et al.  Low-group-velocity and low-dispersion slow light in photonic crystal waveguides. , 2007, Optics letters.

[38]  Jiping Huang,et al.  Second-harmonic generation with magnetic-field controllabilities , 2006 .

[39]  B. Eggleton,et al.  Slow-light dispersion engineering of photonic crystal waveguides using selective microfluidic infiltration. , 2012, Optics letters.

[40]  Thomas F. Krauss,et al.  Dispersion engineered slow light in photonic crystals: a comparison , 2010 .

[41]  K. Chiang,et al.  Temporal Response Measurement of Magnetic Fluids Based on D-Shaped Fiber Intermodal Interferometer , 2013 .

[42]  L. Vivien,et al.  Improvement of delay-bandwidth product in photonic crystal slow-light waveguides. , 2010, Optics express.

[43]  S. Harris,et al.  Light speed reduction to 17 metres per second in an ultracold atomic gas , 1999, Nature.

[44]  Min Qiu,et al.  Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals , 2002 .

[45]  Shengli Pu,et al.  Tunable magneto?optic modulation based on magnetically responsive nanostructured magnetic fluid , 2011 .

[46]  Ning Wang,et al.  Extremely large bandwidth and ultralow-dispersion slow light in photonic crystal waveguides with magnetically controllability , 2013 .

[47]  Qiang Li,et al.  Theoretical investigation of the extinction coefficient of magnetic fluid , 2013, Journal of Nanoparticle Research.

[48]  Dingshan Gao,et al.  Slow light in an alternative row of ellipse-hole photonic crystal waveguide. , 2013, Applied optics.

[49]  T. Krauss,et al.  Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth. , 2007, Optics express.

[50]  Y M Liu,et al.  Optical negative refraction in ferrofluids with magnetocontrollability. , 2010, Physical review letters.

[51]  L. Vivien,et al.  Dispersion engineered slot photonic crystal waveguides for slow light operation , 2012 .

[52]  Shanhui Fan,et al.  Stopping light all optically. , 2004, Physical review letters.

[53]  John Philip,et al.  Spectral response of magnetic nanofluid to toxic cations , 2013 .

[54]  U. Buchenau,et al.  Optical properties of magnetite , 1972 .

[55]  Shieh-Yueh Yang,et al.  Control parameters for the tunable refractive index of magnetic fluid films , 2003 .

[56]  Toshihiko Baba,et al.  Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide. , 2008, Optics express.

[57]  A Säynätjoki,et al.  Dispersion engineering of photonic crystal waveguides with ring-shaped holes. , 2007, Optics express.