Drosophila Fragile X Protein, DFXR, Regulates Neuronal Morphology and Function in the Brain

[1]  Joel D Levine,et al.  Signal analysis of behavioral and molecular cycles , 2002, BMC Neuroscience.

[2]  Gerald M. Rubin,et al.  Drosophila Fragile X-Related Gene Regulates the MAP1B Homolog Futsch to Control Synaptic Structure and Function , 2001, Cell.

[3]  J. Darnell,et al.  Microarray Identification of FMRP-Associated Brain mRNAs and Altered mRNA Translational Profiles in Fragile X Syndrome , 2001, Cell.

[4]  J. Darnell,et al.  Fragile X Mental Retardation Protein Targets G Quartet mRNAs Important for Neuronal Function , 2001, Cell.

[5]  L. Luo,et al.  Regulating Axon Branch Stability The Role of p190 RhoGAP in Repressing a Retraction Signaling Pathway , 2001, Cell.

[6]  Karel Svoboda,et al.  Abnormal Development of Dendritic Spines inFMR1 Knock-Out Mice , 2001, The Journal of Neuroscience.

[7]  J. Settleman,et al.  p190 RhoGAP is the principal Src substrate in brain and regulates axon outgrowth, guidance and fasciculation , 2001, Nature Cell Biology.

[8]  E. Hafen,et al.  Lilliputian: an AF4/FMR2-related protein that controls cell identity and cell growth. , 2001, Development.

[9]  I. Weiler,et al.  Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. , 2001, American journal of medical genetics.

[10]  D. Loesch,et al.  Melatonin profiles and sleep characteristics in boys with fragile X syndrome: a preliminary study. , 2000, American journal of medical genetics.

[11]  V S Caviness,et al.  The adhesion signaling molecule p190 RhoGAP is required for morphogenetic processes in neural development. , 2000, Development.

[12]  Lili Wan,et al.  Characterization of dFMR1, a Drosophila melanogaster Homolog of the Fragile X Mental Retardation Protein , 2000, Molecular and Cellular Biology.

[13]  W. Greenough,et al.  Dendritic spine structural anomalies in fragile-X mental retardation syndrome. , 2000, Cerebral cortex.

[14]  H. Ropers,et al.  Mutations in ARHGEF6, encoding a guanine nucleotide exchange factor for Rho GTPases, in patients with X-linked mental retardation , 2000, Nature Genetics.

[15]  D. Nelson,et al.  (Over)correction of FMR1 deficiency with YAC transgenics: behavioral and physical features. , 2000, Human molecular genetics.

[16]  C. Helfrich-Förster,et al.  Ectopic Expression of the Neuropeptide Pigment-Dispersing Factor Alters Behavioral Rhythms in Drosophila melanogaster , 2000, The Journal of Neuroscience.

[17]  Jeffrey C. Hall,et al.  A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. , 2000, Cell.

[18]  J. C. Hall,et al.  Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Bassem A. Hassan,et al.  atonal Regulates Neurite Arborization but Does Not Act as a Proneural Gene in the Drosophila Brain , 2000, Neuron.

[20]  Jeffrey C. Hall,et al.  A pdf Neuropeptide Gene Mutation and Ablation of PDF Neurons Each Cause Severe Abnormalities of Behavioral Circadian Rhythms in Drosophila , 1999, Cell.

[21]  J. Truman,et al.  The hormonal coordination of behavior and physiology at adult ecdysis in Drosophila melanogaster. , 1999, The Journal of experimental biology.

[22]  D. V. Vactor,et al.  Neural development: The semantics of axon guidance , 1999, Current Biology.

[23]  Liqun Luo,et al.  Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis , 1999, Neuron.

[24]  P. Billuart,et al.  Oligophrenin 1 encodes a rho-GAP protein involved in X-linked mental retardation. , 1998, Pathologie-biologie.

[25]  I. Edery,et al.  The Drosophila CLOCK Protein Undergoes Daily Rhythms in Abundance, Phosphorylation, and Interactions with the PER–TIM Complex , 1998, Neuron.

[26]  C. Gunter,et al.  Purified Recombinant Fmrp Exhibits Selective RNA Binding as an Intrinsic Property of the Fragile X Mental Retardation Protein* , 1998, The Journal of Biological Chemistry.

[27]  H. R. Crollius,et al.  Oligophrenin-1 encodes a rhoGAP protein involved in X-linked mental retardation , 1998, Nature.

[28]  A T Hoogeveen,et al.  Differential expression of FMR1, FXR1 and FXR2 proteins in human brain and testis. , 1997, Human molecular genetics.

[29]  I. Weiler,et al.  Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[30]  S. Antonarakis,et al.  Localisation of a human homologue of the Drosophila mnb and rat Dyrk genes to chromosome 21q22.2 , 1997, Human Genetics.

[31]  J. Morton,et al.  Fragile X syndrome is less common than previously estimated. , 1997, Journal of medical genetics.

[32]  R. Hagerman,et al.  Fragile X syndrome. , 1989, Journal of pediatric health care : official publication of National Association of Pediatric Nurse Associates & Practitioners.

[33]  X. Estivill,et al.  A human homologue of Drosophila minibrain (MNB) is expressed in the neuronal regions affected in Down syndrome and maps to the critical region. , 1996, Human molecular genetics.

[34]  S. Warren,et al.  The fragile X mental retardation protein is a ribonucleoprotein containing both nuclear localization and nuclear export signals. , 1996, Human molecular genetics.

[35]  D. Nelson,et al.  Intragenic loss of function mutations demonstrate the primary role of FMR1 in fragile X syndrome , 1995, Nature Genetics.

[36]  M. Gassmann,et al.  Tissue-specific expression of a FMR1/β-galactosidase fusion gene in transgenic mice , 1995 .

[37]  F. Jackson,et al.  Altered circadian pacemaker functions and cyclic AMP rhythms in the drosophila learning mutant dunce , 1994, Neuron.

[38]  J. Vockley,et al.  A de novo deletion in FMR1 in a patient with developmental delay. , 1994, Human molecular genetics.

[39]  B. Oostra,et al.  A deletion of 1.6 kb proximal to the CGG repeat of the FMR1 gene causes the clinical phenotype of the fragile X syndrome. , 1994, Human molecular genetics.

[40]  J. Mandel,et al.  The FMR–1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation , 1993, Nature Genetics.

[41]  R. Nussbaum,et al.  The protein product of the fragile X gene, FMR1, has characteristics of an RNA-binding protein , 1993, Cell.

[42]  J. Mallet,et al.  Nucleus basalis magnocellularis and hippocampus are the major sites of FMR-1 expression in the human fetal brain , 1993, Nature Genetics.

[43]  J. C. Hall,et al.  Expression of the period clock gene within different cell types in the brain of Drosophila adults and mosaic analysis of these cells' influence on circadian behavioral rhythms , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  W. Brown,et al.  Analysis of neocortex in three males with the fragile X syndrome. , 1991, American journal of medical genetics.

[45]  Ben A. Oostra,et al.  Absence of expression of the FMR-1 gene in fragile X syndrome , 1991, Cell.

[46]  F. Jackson,et al.  Mutational analysis of the Drosophila miniature-dusky (m-dy) locus: effects on cell size and circadian rhythms. , 1991, Genetics.

[47]  J. Sutcliffe,et al.  Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome , 1991, Cell.

[48]  T. Webb,et al.  Prevalence of fragile X syndrome. , 1991, American journal of medical genetics.

[49]  K. Wisniewski,et al.  The Fra(X) syndrome: neurological, electrophysiological, and neuropathological abnormalities. , 1991, American journal of medical genetics.

[50]  H. Wiśniewski,et al.  Adult fragile X syndrome , 1985, Acta Neuropathologica.

[51]  M Heisenberg,et al.  Separation of receptor and lamina potentials in the electroretinogram of normal and mutant Drosophila. , 1971, The Journal of experimental biology.

[52]  G. O'Brien Behavioural phenotypes , 2000, Journal of the Royal Society of Medicine.

[53]  L. Shaffer,et al.  The human homologue of the Drosophila melanogaster flightless-I gene (flil) maps within the Smith-Magenis microdeletion critical region in 17p11.2. , 1995, American journal of human genetics.

[54]  B. Oostra,et al.  A deletion of 1.6 Kb proximal to the CGG repeat of the FMR1 gene causes fragile X-like psychological features. , 1994, Genetic counseling.

[55]  Edwin Reyniers,et al.  A point mutation in the FMR-1 gene associated with fragile X mental retardation , 1993, Nature Genetics.