A new cobalt-free composite cathode Pr0.6Sr0.4Cu0.2Fe0.8O3−δ-Ce0.8Sm0.2O2−δ for proton-conducting solid oxide fuel cells

Abstract Pr 0.6 Sr 0.4 Cu 0.2 Fe 0.8 O 3−δ -Ce 0.8 Sm 0.2 O 2−δ (PSCF-SDC) (70:30 wt.%), a new cobalt-free composite cathode, is investigated for BaZr 0.3 Ce 0.5 Y 0.2 O 3−δ -based proton-conducting solid oxide fuel cells (H-SOFCs). The influence of firing temperature on cathode microstructure and electrochemical performance of fuel cells is researched and analyzed. These results show that the optimum sintering temperature of PSCF-SDC composite cathode is 800 °C. The low polarization resistance of 0.14 Ω cm 2 and the maximum power density of 456 mW cm −2 are achieved at 650 °C. Cell performance is further enhanced when the BaZr 0.3 Ce 0.5 Y 0.2 O 3−δ electrolyte is replaced by BaZr 0.1 Ce 0.7 Y 0.2 O 3−δ with higher proton conductivity; resulting in an improved maximum power density of 556 mW cm −2 at 650 °C.

[1]  Masaharu Hatano,et al.  Ba(Zr0.1Ce0.7Y0.2)O3–δ as an Electrolyte for Low‐Temperature Solid‐Oxide Fuel Cells , 2006 .

[2]  S. Adler Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.

[3]  B. Lin,et al.  A cobalt-free Sm0.5Sr0.5FeO3−δ–BaZr0.1Ce0.7Y0.2O3−δ composite cathode for proton-conducting solid oxide fuel cells , 2012 .

[4]  Yan Li,et al.  La0.6Sr0.4Fe0.8Cu0.2O3−δ perovskite oxide as cathode for IT-SOFC , 2012 .

[5]  Lei Bi,et al.  The effect of oxygen transfer mechanism on the cathode performance based on proton-conducting solid oxide fuel cells , 2015 .

[6]  Bin Lin,et al.  (La, Pr)0.8Sr0.2FeO3−δ–Sm0.2Ce0.8O2−δ composite cathode for proton-conducting solid oxide fuel cells , 2014 .

[7]  Zongping Shao,et al.  Evaluation of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ as a Potential Cathode for an Anode-Supported Proton-Conducting Solid-Oxide Fuel Cell , 2008 .

[8]  Naiqing Zhang,et al.  Preparation and characterization of Pr1−xSrxFeO3 cathode material for intermediate temperature solid oxide fuel cells , 2007 .

[9]  Tingting Wang,et al.  Preparation and oxygen permeation properties of SrFe(Cu)O3-δ dense ceramic membranes , 2009 .

[10]  Zhiwen Zhu,et al.  A new cobalt-free proton-blocking composite cathode La2NiO4+δ–LaNi0.6Fe0.4O3−δ for BaZr0.1Ce0.7Y0.2O3−δ-based solid oxide fuel cells , 2014 .

[11]  Meilin Liu,et al.  A Novel Composite Cathode for Low‐Temperature SOFCs Based on Oxide Proton Conductors , 2008 .

[12]  Meilin Liu,et al.  Effect of Zr-Doping on the Chemical Stability and Hydrogen Permeation of the Ni−BaCe0.8Y0.2O3-α Mixed Protonic−Electronic Conductor , 2006 .

[13]  Chunwen Sun,et al.  Cathode materials for solid oxide fuel cells: a review , 2010 .

[14]  C. Xia,et al.  Sm0.5Sr0.5CoO3 − δ–BaCe0.8Sm0.2O3-δ composite cathodes for proton-conducting solid oxide fuel cells , 2008 .

[15]  Wei Liu,et al.  Novel cobalt-free cathode materials BaCexFe1−xO3−δ for proton-conducting solid oxide fuel cells , 2009 .

[16]  Zongping Shao,et al.  A high-performance cathode for the next generation of solid-oxide fuel cells , 2004, Nature.

[17]  Wenping Sun,et al.  Synthesis and characterization of BaZr0.3Ce0.5Y0.2−xYbxO3−δ proton conductor for solid oxide fuel cells , 2014 .

[18]  G. Meng,et al.  High performance protonic ceramic membrane fuel cells (PCMFCs) with Sm0.5Sr0.5CoO3―δ perovskite cathode , 2010 .

[19]  Andreas Mai,et al.  Performance of LSCF cathodes in cell tests , 2006 .

[20]  F. Tietz,et al.  Survey of the quasi-ternary system La0.8Sr0.2MnO3–La0.8Sr0.2CoO3–La0.8Sr0.2FeO3 , 2007 .

[21]  Litao Yan,et al.  Proton-Blocking Composite Cathode for Proton-Conducting Solid Oxide Fuel Cell , 2011 .

[22]  G. Meng,et al.  Stable, easily sintered BaCe0.5Zr0.3Y0.16Zn0.04O3−δ electrolyte-based protonic ceramic membrane fuel cells with Ba0.5Sr0.5Zn0.2Fe0.8O3−δ perovskite cathode , 2008 .

[23]  H. Hwang,et al.  Electrochemical performance of LSCF-based composite cathodes for intermediate temperature SOFCs , 2005 .

[24]  Yan Li,et al.  LaBaCuFeO5+δ–Ce0.8Sm0.2O1.9 as composite cathode for solid oxide fuel cells , 2012 .

[25]  G. Meng,et al.  High performance protonic ceramic membrane fuel cells (PCMFCs) with Ba0.5Sr0.5Zn0.2Fe0.8O3−δ perovskite cathode , 2008 .

[26]  S. Licoccia,et al.  Tailoring the chemical stability of Ba(Ce0.8−xZrx)Y0.2O3−δ protonic conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs) , 2008 .

[27]  Bin Lin,et al.  High performance proton-conducting solid oxide fuel cells with a stable Sm0.5Sr0.5Co3−δ–Ce0.8Sm0.2O2−δ composite cathode , 2010 .

[28]  S. Chan,et al.  Development of LSCF–GDC composite cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte , 2008 .

[29]  Z. Wen,et al.  Performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-CGO-Ag cathode for IT-SOFCs , 2007 .

[30]  F. Tietz,et al.  Evaluation of La–Sr–Co–Fe–O perovskites for solid oxide fuel cells and gas separation membranes , 2000 .

[31]  Wei Liu,et al.  A high performance BaZr0.1Ce0.7Y0.2O3-δ-based solid oxide fuel cell with a cobalt-free Ba0.5Sr0.5FeO3-δ–Ce0.8Sm0.2O2-δ composite cathode , 2010 .

[32]  E. Wachsman,et al.  Lowering the Temperature of Solid Oxide Fuel Cells , 2011, Science.

[33]  Chenghao Yang,et al.  Investigation of A-site deficient Ba0.9Co0.7Fe0.2Nb0.1O3−δ cathode for proton conducting electrolyte based solid oxide fuel cells , 2014 .

[34]  Meilin Liu,et al.  Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs , 2002 .

[35]  Xingjian Xue,et al.  A novel cobalt-free layered GdBaFe2O5+δ cathode for proton conducting solid oxide fuel cells , 2010 .

[36]  Wei Liu,et al.  Optimization of BaZr0.1Ce0.7Y0.2O3−δ-based proton-conducting solid oxide fuel cells with a cobalt-free proton-blocking La0.7Sr0.3FeO3−δ–Ce0.8Sm0.2O2−δ composite cathode , 2011 .

[37]  Jun Lu,et al.  Preparation and characterization of new cobalt-free cathode Pr0.5Sr0.5Fe0.8Cu0.2O3−δ for IT-SOFC , 2013 .