Improved local convergence of Newton's method under weak majorant condition

We provide a local convergence analysis for Newton's method under a weak majorant condition in a Banach space setting. Our results provide under the same information a larger radius of convergence and tighter error estimates on the distances involved than before [14]. Special cases and numerical examples are also provided in this study.

[1]  Ioannis K. Argyros Concerning the convergence of Newton’s method and quadratic majorants , 2009 .

[2]  Ioannis K. Argyros,et al.  Inexact Newton methods and recurrent functions , 2010 .

[3]  Chong Li,et al.  Local convergence of inexact methods under the Hölder condition , 2008 .

[4]  Orizon Pereira Ferreira,et al.  Kantorovich’s majorants principle for Newton’s method , 2009, Comput. Optim. Appl..

[5]  J. M. Gutiérrez,et al.  Newton’s method under weak Kantorovich conditions , 2000 .

[6]  Orizon Pereira Ferreira,et al.  Local convergence of Newton's method under majorant condition , 2010, J. Comput. Appl. Math..

[7]  P. P. Zabrejko,et al.  New results on newton-kantorovich approximations with applications to nonlinear integral equations , 1997 .

[8]  Petko D. Proinov New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems , 2010, J. Complex..

[9]  Ioannis K. Argyros,et al.  Extending the Newton-Kantorovich hypothesis for solving equations , 2010, J. Comput. Appl. Math..

[10]  L. Kantorovich,et al.  Functional analysis in normed spaces , 1952 .

[11]  Ioannis K. Argyros Concerning the semilocal convergence of Newton’s method and convex majorants , 2008 .

[12]  Petko D. Proinov General local convergence theory for a class of iterative processes and its applications to Newton's method , 2009, J. Complex..

[13]  W. Rheinboldt An adaptive continuation process for solving systems of nonlinear equations , 1978 .

[14]  Orizon P. Ferreira,et al.  Local convergence of Newton's method in Banach space from the viewpoint of the majorant principle , 2009 .

[15]  Ioannis K. Argyros,et al.  A semilocal convergence analysis for directional Newton methods , 2010, Math. Comput..

[16]  Orizon Pereira Ferreira,et al.  Local convergence analysis of inexact Newton-like methods under majorant condition , 2008, Comput. Optim. Appl..

[17]  Ioannis K. Argyros On the semilocal convergence of inexact Newton methods in Banach spaces , 2009 .

[18]  Ioannis K. Argyros,et al.  ON THE CONVERGENCE OF INEXACT TWO-STEP NEWTON-TYPE METHODS USING RECURRENT FUNCTIONS , 2011 .

[19]  Ioannis K. Argyros,et al.  A unifying local–semilocal convergence analysis and applications for two-point Newton-like methods in Banach space , 2004 .

[20]  Ioannis K. Argyros Local convergence of Newton's method using Kantorovich convex majorants , 2010 .

[21]  Wang Xinghua,et al.  Convergence of Newton's method and inverse function theorem in Banach space , 1999 .

[22]  I. Argyros Computational Theory of Iterative Methods , 2014 .

[23]  Ioannis K. Argyros,et al.  Computational Theory of Iterative Methods, Volume 15 , 2007 .

[24]  Miguel Ángel Hernández,et al.  Accessibility Of Solutions By Newton's Method , 1995, Int. J. Comput. Math..

[25]  Zhengda Huang,et al.  Newton method under weak Lipschitz continuous derivative in Banach spaces , 2003, Appl. Math. Comput..