SOME COMBINATORIAL ASPECTS OF NUMERICAL RANGE *
暂无分享,去创建一个
[1] M. Marcus,et al. Linear operators preserving the decomposable numerical range , 1979 .
[2] Charles R. Johnson. NUMERICAL DETERMINATION OF THE FIELD OF VALUES OF A GENERAL COMPLEX MATRIX , 1978 .
[3] M. Marcus,et al. Normality and the Higher Numerical Range , 1978, Canadian Journal of Mathematics.
[4] Yik-Hoi Au-Yeung,et al. A remark on the generalized numerical range of a normal matrix , 1977, Glasgow Mathematical Journal.
[5] Moshe Goldberg,et al. Elementary inclusion relations for generalized numerical ranges , 1977 .
[6] G. Zwas,et al. Inclusion relations between certain sets of matrices: Marix inclusion relations , 1976 .
[7] Yik-Hoi Au-Yeung,et al. A simple proof of the convexity of the field of values defined by two hermitian forms , 1975 .
[8] R. Westwick,et al. A theorem on numerical range , 1975 .
[9] E. Tadmor,et al. The numerical radius and specttural matrices , 1975 .
[10] J. P. Williams,et al. Some convexity theorems for matrices , 1971, Glasgow Mathematical Journal.
[11] Chandler Davis. The Toeplitz-Hausdorff Theorem Explained , 1971, Canadian Mathematical Bulletin.
[12] Karl Gustafson,et al. The Toeplitz-Hausdorff theorem for linear operators , 1970 .
[13] R. Raghavendran. Shorter Notes: Toeplitz-Hausdorff Theorem on Numerical Ranges , 1969 .
[14] R. Raghavendran. Toeplitz-Hausdorff theorem on numerical ranges , 1969 .
[15] F. Smithies. A HILBERT SPACE PROBLEM BOOK , 1968 .
[16] S. Hildebrandt. Über den numerischen Wertebereich eines Operators , 1966 .
[17] D. Djoković. On the field of a linear transformation , 1965 .
[18] A. J. Goldman,et al. Convexity of the Field of a Linear Transformation , 1959, Canadian Mathematical Bulletin.
[19] E. Asplund. Metric criteria of normality for complex matrices of order less than 5 , 1958 .
[20] W. Donoghue,et al. On the numerical range of a bounded operator. , 1957 .
[21] M. Marcus,et al. Field convexity of a square matrix , 1955 .
[22] A. Horn. Doubly Stochastic Matrices and the Diagonal of a Rotation Matrix , 1954 .
[23] R. Kippenhahn. Über den Wertevorrat einer Matrix , 1951 .
[24] H. Weyl. Inequalities between the Two Kinds of Eigenvalues of a Linear Transformation. , 1949, Proceedings of the National Academy of Sciences of the United States of America.
[25] K. Fan. On a Theorem of Weyl Concerning Eigenvalues of Linear Transformations I. , 1949, Proceedings of the National Academy of Sciences of the United States of America.
[26] E. L.. Linear Transformations in Hilbert Space: and their Applications to Analysis , 1933, Nature.
[27] F. Hausdorff. Der Wertvorrat einer Bilinearform , 1919 .
[28] O. Toeplitz. Das algebraische Analogon zu einem Satze von Fejér , 1918 .