SOME COMBINATORIAL ASPECTS OF NUMERICAL RANGE *

[1]  M. Marcus,et al.  Linear operators preserving the decomposable numerical range , 1979 .

[2]  Charles R. Johnson NUMERICAL DETERMINATION OF THE FIELD OF VALUES OF A GENERAL COMPLEX MATRIX , 1978 .

[3]  M. Marcus,et al.  Normality and the Higher Numerical Range , 1978, Canadian Journal of Mathematics.

[4]  Yik-Hoi Au-Yeung,et al.  A remark on the generalized numerical range of a normal matrix , 1977, Glasgow Mathematical Journal.

[5]  Moshe Goldberg,et al.  Elementary inclusion relations for generalized numerical ranges , 1977 .

[6]  G. Zwas,et al.  Inclusion relations between certain sets of matrices: Marix inclusion relations , 1976 .

[7]  Yik-Hoi Au-Yeung,et al.  A simple proof of the convexity of the field of values defined by two hermitian forms , 1975 .

[8]  R. Westwick,et al.  A theorem on numerical range , 1975 .

[9]  E. Tadmor,et al.  The numerical radius and specttural matrices , 1975 .

[10]  J. P. Williams,et al.  Some convexity theorems for matrices , 1971, Glasgow Mathematical Journal.

[11]  Chandler Davis The Toeplitz-Hausdorff Theorem Explained , 1971, Canadian Mathematical Bulletin.

[12]  Karl Gustafson,et al.  The Toeplitz-Hausdorff theorem for linear operators , 1970 .

[13]  R. Raghavendran Shorter Notes: Toeplitz-Hausdorff Theorem on Numerical Ranges , 1969 .

[14]  R. Raghavendran Toeplitz-Hausdorff theorem on numerical ranges , 1969 .

[15]  F. Smithies A HILBERT SPACE PROBLEM BOOK , 1968 .

[16]  S. Hildebrandt Über den numerischen Wertebereich eines Operators , 1966 .

[17]  D. Djoković On the field of a linear transformation , 1965 .

[18]  A. J. Goldman,et al.  Convexity of the Field of a Linear Transformation , 1959, Canadian Mathematical Bulletin.

[19]  E. Asplund Metric criteria of normality for complex matrices of order less than 5 , 1958 .

[20]  W. Donoghue,et al.  On the numerical range of a bounded operator. , 1957 .

[21]  M. Marcus,et al.  Field convexity of a square matrix , 1955 .

[22]  A. Horn Doubly Stochastic Matrices and the Diagonal of a Rotation Matrix , 1954 .

[23]  R. Kippenhahn Über den Wertevorrat einer Matrix , 1951 .

[24]  H. Weyl Inequalities between the Two Kinds of Eigenvalues of a Linear Transformation. , 1949, Proceedings of the National Academy of Sciences of the United States of America.

[25]  K. Fan On a Theorem of Weyl Concerning Eigenvalues of Linear Transformations I. , 1949, Proceedings of the National Academy of Sciences of the United States of America.

[26]  E. L. Linear Transformations in Hilbert Space: and their Applications to Analysis , 1933, Nature.

[27]  F. Hausdorff Der Wertvorrat einer Bilinearform , 1919 .

[28]  O. Toeplitz Das algebraische Analogon zu einem Satze von Fejér , 1918 .