DISCOVERY AND MASS MEASUREMENTS OF A COLD, 10 EARTH MASS PLANET AND ITS HOST STAR

We present the discovery and mass measurement of the cold, low-mass planet MOA-2009-BLG-266Lb, performed with the gravitational microlensing method. This planet has a mass of mp = 10.4 ± 1.7 M⊕ and orbits a star of mass M⋆ = 0.56 ± 0.09 M☉ at a semimajor axis of a = 3.2+1.9-0.5 AU and an orbital period of P = 7.6+7.7-1.5 yrs. The planet and host star mass measurements are enabled by the measurement of the microlensing parallax effect, which is seen primarily in the light curve distortion due to the orbital motion of the Earth. But the analysis also demonstrates the capability to measure the microlensing parallax with the Deep Impact (or EPOXI) spacecraft in a heliocentric orbit. The planet mass and orbital distance are similar to predictions for the critical core mass needed to accrete a substantial gaseous envelope, and thus may indicate that this planet is a "failed" gas giant. This and future microlensing detections will test planet formation theory predictions regarding the prevalence and masses of such planets.

K. Ulaczyk | S. Dreizler | K. Masuda | J. Southworth | P. M. Kilmartin | M. Dominik | J. Surdej | S. Calchi Novati | G. Scarpetta | I. Steele | R. K. Barry | D. L. DePoy | U. G. Jorgensen | J. Skottfelt | A. C. Becker | K. C. Sahu | D. Maoz | Y. Itow | P. Fouque | D. J. Sullivan | To. Saito | A. Udalski | I. A. Bond | M. Freeman | C. H. Ling | P. J. Tristram | D. M. Bramich | A. Cassan | M. Hundertmark | C. Snodgrass | J. Wambsganss | V. Bozza | M. J. Burgdorf | T. C. Hinse | S. Rahvar | S. Kaspi | D. Suzuki | R. Poleski | F. Mallia | K. Furusawa | B. S. Gaudi | W. L. Sweatman | K. Horne | L. Mancini | Ch. Coutures | J. Skowron | M. K. Szymanski | G. Pietrzynski | I. Soszynski | D. D. Wellnitz | S. Brillant | J. McCormick | D. Ricci | D. P. Bennett | N. J. Rattenbury | J. Beaulieu | G. Scarpetta | D. Maoz | B. Gaudi | D. Bennett | R. Poleski | Avi Shporer | R. Street | D. Depoy | K. Ulaczyk | M. Burgdorf | J. Surdej | S. Dong | L. Monard | J. Wambsganss | R. Pogge | J. Menzies | I. Steele | P. Yock | L. Mancini | F. Mallia | D. Bramich | S. Dreizler | U. Jørgensen | K. Horne | M. Dominik | K. Harpsoe | C. Liebig | S. Novati | D. Ricci | J. Skottfelt | A. Fukui | F. Abe | K. Sahu | S. Rahvar | A. Udalski | M. Szymański | M. Kubiak | C. Botzler | R. Barry | C. Snodgrass | D. Wellnitz | S. Kaspi | T. Nagayama | F. Finet | V. Bozza | P. Browne | M. Glitrup | T. Hinse | M. Hundertmark | N. Kains | G. Maier | M. Mathiasen | J. Southworth | F. Zimmer | J. Skowron | P. Fouqué | L. Wyrzykowski | I. Soszyński | J. Caldwell | W. Sweatman | D. Sullivan | Y. Itow | Y. Matsubara | Y. Muraki | Y. Perrott | D. Prester | Y. Matsuoka | P. Tristram | A. Allan | Y. Tsapras | J. Marquette | M. Albrow | J. Yee | C. Han | B.-G. Park | K. Masuda | J. Hearnshaw | N. Oi | J. Greenhill | Z. Randriamanakoto | D. Polishook | Y. Matsubara | Y. Muraki | L. Wyrzykowski | F. Finet | F. Abe | J.-P. Beaulieu | T. Sumi | J. Donatowicz | T. Sumi | I. Bond | N. Rattenbury | K. Kamiya | P. Kilmartin | A. Cassan | K. Furusawa | A. Korpela | W. Lin | C. Ling | N. Miyake | K. Ohnishi | M. Freeman | F. Hayashi | S. Hosaka | S. Makita | K. Nishimoto | L. Skuljan | D. Suzuki | G. Christie | J. Mccormick | D. Moorhouse | T. Natusch | G. Thornley | R. W. Pogge | C. Han | M. D. Albrow | C.-U. Lee | B.-G. Park | K. Kamiya | A. Shporer | D. Polishook | R. Street | R. Martin | C. Coutures | V. Batista | D. Kubas | S. Dong | L. Skuljan | C. S. Botzler | A. Fukui | J. B. Hearnshaw | W. Lin | N. Miyake | T. Nagayama | K. Ohnishi | Y. C. Perrott | P.C.M. Yock | A. Cole | J. Greenhill | J.A.R. Caldwell | S. Dieters | D. Dominis Prester | J. Donatowicz | N. Kains | Y. Tsapras | M. Kubiak | G. W. Christie | T. Natusch | J. C. Yee | V. Batista | D. Heyrovský | A. Zub | A. Allan | P. Browne | R. Martin | A. Gould | J.-B. Marquette | C. Liebig | K. Harpsoe | M. Mathiasen | Y. Matsuoka | D. Kubas | S. Brillant | A. Cole | S. Dieters | A. Gould | L.A.G. Monard | P. Kundurthy | D. Heyrovsky | F. Hayashi | S. Hosaka | A. V. Korpela | S. Makita | K. Nishimoto | K. Wada | E. Gorbikov | D. Moorhouse | G. Thornley | C. S. Bennett | R. Corrales | J Menzies | I. Waldman | A. Williams M. Zub | H. Bourhrous | N. Oi | Z. Randriamanakoto | M. Glitrup | G. Maier | F. Zimmer | E. Gorbikov | P. Kundurthy | G. Pietrzyński | A. Becker | S. C. Novati | C.‐U. Lee | T. Saito | K. Wada | I. Waldman | H. Bourhrous | R. Corrales | J. Caldwell | T. Saito

[1]  B. Monard,et al.  MOA-2009-BLG-387Lb: a massive planet orbiting an M dwarf , 2011, 1102.0558.

[2]  B. Monard,et al.  SUB-SATURN PLANET MOA-2008-BLG-310Lb: LIKELY TO BE IN THE GALACTIC BULGE , 2009, 0908.0529.

[3]  Scott J. Kenyon,et al.  Planet Formation around Stars of Various Masses: The Snow Line and the Frequency of Giant Planets , 2007, 0710.1065.

[4]  M. J. Lehner,et al.  First Observation of Parallax in a Gravitational Microlensing Event , 1995, astro-ph/9506114.

[5]  Andrew Gould,et al.  Planet Parameters in Microlensing Events , 1996, astro-ph/9610123.

[6]  Andrew Gould,et al.  Extending the MACHO Search to approximately 10 6 M sub sun , 1992 .

[7]  Christopher W. Stubbs,et al.  Toward More Precise Survey Photometry for PanSTARRS and LSST: Measuring Directly the Optical Transmission Spectrum of the Atmosphere , 2007, 0708.1364.

[8]  R. Lupton,et al.  A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.

[9]  K. Ulaczyk,et al.  First Space-Based Microlens Parallax Measurement: Spitzer Observations of OGLE-2005-SMC-001 , 2007, astro-ph/0702240.

[10]  R. A. Street,et al.  FREQUENCY OF SOLAR-LIKE SYSTEMS AND OF ICE AND GAS GIANTS BEYOND THE SNOW LINE FROM HIGH-MAGNIFICATION MICROLENSING EVENTS IN 2005–2008 , 2010, 1001.0572.

[11]  David P. Bennett,et al.  Detecting Earth-Mass Planets with Gravitational Microlensing , 1996, astro-ph/9603158.

[12]  K. Ulaczyk,et al.  Discovery of a Jupiter/Saturn Analog with Gravitational Microlensing , 2008, Science.

[13]  S Ida,et al.  Toward a Deterministic Model of Planetary Formation. III. Mass Distribution of Short-Period Planets around Stars of Various Masses , 2005 .

[14]  C. H. Ling,et al.  MICROLENSING EVENT MOA-2007-BLG-400: EXHUMING THE BURIED SIGNATURE OF A COOL, JOVIAN-MASS PLANET , 2008, 0809.2997.

[15]  K. Ulaczyk,et al.  BINARY MICROLENSING EVENT OGLE-2009-BLG-020 GIVES VERIFIABLE MASS, DISTANCE, AND ORBIT PREDICTIONS , 2011, 1101.3312.

[16]  D. Bennett AN EFFICIENT METHOD FOR MODELING HIGH-MAGNIFICATION PLANETARY MICROLENSING EVENTS , 2009, 0911.2703.

[17]  K. Ulaczyk,et al.  MASSES AND ORBITAL CONSTRAINTS FOR THE OGLE-2006-BLG-109Lb,c JUPITER/SATURN ANALOG PLANETARY SYSTEM , 2009, 0911.2706.

[18]  O. Pejcha,et al.  EXTENDED-SOURCE EFFECT AND CHROMATICITY IN TWO-POINT-MASS MICROLENSING , 2007, 0712.2217.

[19]  C. H. Ling,et al.  A SUB-SATURN MASS PLANET, MOA-2009-BLG-319Lb , 2010, 1010.1809.

[20]  C. H. Ling,et al.  MOA-2010-BLG-073L: AN M-DWARF WITH A SUBSTELLAR COMPANION AT THE PLANET/BROWN DWARF BOUNDARY , 2012, 1211.3782.

[21]  Y. Watase,et al.  Real-time difference imaging analysis of moa galactic bulge observations during 2000 , 2001 .

[22]  Gregory Laughlin,et al.  The Core Accretion Model Predicts Few Jovian-Mass Planets Orbiting Red Dwarfs , 2004, astro-ph/0407309.

[23]  Austin B. Tomaney,et al.  Expanding the Realm of Microlensing Surveys with Difference Image Photometry , 1996 .

[24]  S. Mao,et al.  Erratum: Modelling the Galactic bar using OGLE-II red clump giant stars , 2007, 0704.1614.

[25]  J. Christiansen,et al.  Development and utilization of a point spread function for the Extrasolar Planet Observation and Characterization/Deep Impact Extended Investigation (EPOXI) Mission , 2010, Astronomical Telescopes + Instrumentation.

[26]  K. Masuda,et al.  MOA-cam3: a wide-field mosaic CCD camera for a gravitational microlensing survey in New Zealand , 2008 .

[27]  A. Udalski,et al.  The Optical Gravitational Lensing Experiment. Final Reductions of the OGLE-III Data , 2008, 0807.3884.

[28]  P. Schechter,et al.  DOPHOT, A CCD PHOTOMETRY PROGRAM: DESCRIPTION AND TESTS , 1993 .

[29]  B. Scott Gaudi,et al.  Characterization of Gravitational Microlensing Planetary Host Stars , 2007 .

[30]  H. Witt The Effect of the Stellar Size on Microlensing at the Baade Window , 1995 .

[31]  B. Scott Gaudi,et al.  Exoplanetary Microlensing , 2010, 1002.0332.

[32]  W. Ward Protoplanet Migration by Nebula Tides , 1997 .

[33]  P. H. Hauschildt,et al.  Hot-Jupiters and hot-Neptunes: A common origin? , 2005 .

[34]  A. S. Fruchter,et al.  Drizzle: A Method for the Linear Reconstruction of Undersampled Images , 1998 .

[35]  D. Heyrovský Computing Limb-darkening Coefficients from Stellar Atmosphere Models , 2006, astro-ph/0610718.

[36]  F. Fressin,et al.  CHARACTERISTICS OF PLANETARY CANDIDATES OBSERVED BY KEPLER. II. ANALYSIS OF THE FIRST FOUR MONTHS OF DATA , 2011, 1102.0541.

[37]  Andrew Cumming,et al.  The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets , 2008, 0803.3357.

[38]  Howard Isaacson,et al.  The Occurrence and Mass Distribution of Close-in Super-Earths, Neptunes, and Jupiters , 2010, Science.

[39]  M. Dominik,et al.  Detection of Rotation in a Binary Microlens: PLANET Photometry of MACHO 97-BLG-41* , 2000 .

[40]  K. Zebrun,et al.  OGLE 2003-BLG-235/MOA 2003-BLG-53: A Planetary Microlensing Event , 2004 .

[41]  C. H. Ling,et al.  A Low-Mass Planet with a Possible Sub-Stellar-Mass Host in Microlensing Event MOA-2007-BLG-192 , 2008, 0806.0025.

[42]  Philip Yock,et al.  On Planetary Companions to the MACHO 98-BLG-35 Microlens Star , 2000 .

[43]  S. Kenyon,et al.  Planet Formation around Low-Mass Stars: The Moving Snow Line and Super-Earths , 2006, astro-ph/0609140.

[44]  S. Refsdal,et al.  On the Possibility of Determining the Distances and Masses of Stars from the Gravitational Lens Effect , 1966 .

[45]  Andrew Gould,et al.  Discovering Planetary Systems through Gravitational Microlenses , 1992 .

[46]  D. Heyrovský Measuring Stellar Limb Darkening by Gravitational Microlensing , 2003, astro-ph/0305346.

[47]  N. Movshovitz,et al.  The opacity of grains in protoplanetary atmospheres , 2007, 0710.0096.

[48]  A. Gould Hexadecapole Approximation in Planetary Microlensing , 2008, 0801.2578.

[49]  B. Paczyński,et al.  Acceleration and parallax effects in gravitational microlensing , 2002, astro-ph/0210370.

[50]  Roman R. Rafikov Constraint on the Giant Planet Production by Core Accretion , 2011 .

[51]  J. Beaulieu,et al.  Difference imaging photometry of blended gravitational microlensing events with a numerical kernel , 2009, 0905.3003.

[52]  David P. Bennett,et al.  Detection of Extrasolar Planets by Gravitational Microlensing , 2009, 0902.1761.

[53]  Neda Safizadeh,et al.  The Use of High-Magnification Microlensing Events in Discovering Extrasolar Planets , 1997 .

[54]  B. Monard,et al.  A COLD NEPTUNE-MASS PLANET OGLE-2007-BLG-368Lb: Cold neptunes are common , 2009, 0912.1171.

[55]  Peter B. Stetson,et al.  THE CENTER OF THE CORE-CUSP GLOBULAR CLUSTER M15: CFHT AND HST OBSERVATIONS, ALLFRAME REDUCTIONS , 1994 .

[56]  V. Belokurov,et al.  Light and motion in SDSS Stripe 82: The catalogues , 2008, 0801.4894.

[57]  Parallax microlensing events in the OGLE II data base toward the Galactic bulge , 2001, astro-ph/0108214.

[58]  A. Gould,et al.  Einstein Radii from Binary-Source Lensing Events , 1996, astro-ph/9604031.

[59]  On the Location of the Snow Line in a Protoplanetary Disk , 2006, astro-ph/0602217.

[60]  D. Bersier,et al.  Cepheid distances from infrared long-baseline interferometry III. Calibration of the surface brightness-color relations , 2004 .

[61]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[62]  Jae Woo Lee,et al.  Technical specifications of the KMTNet observation system , 2010, Astronomical Telescopes + Instrumentation.

[63]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[64]  A. Gould Resolution of the MACHO-LMC-5 Puzzle: The Jerk-Parallax Microlens Degeneracy , 2003, astro-ph/0311548.

[65]  F. Rasio,et al.  Gas Disks to Gas Giants: Simulating the Birth of Planetary Systems , 2008, Science.

[66]  K. Ulaczyk,et al.  A Jovian-Mass Planet in Microlensing Event OGLE-2005-BLG-071 , 2005 .

[67]  Drake Deming,et al.  SYSTEM PARAMETERS, TRANSIT TIMES, AND SECONDARY ECLIPSE CONSTRAINTS OF THE EXOPLANET SYSTEMS HAT-P-4, TrES-2, TrES-3, and WASP-3 FROM THE NASA EPOXI MISSION OF OPPORTUNITY , 2010, 1011.2229.

[68]  John Asher Johnson,et al.  Giant Planet Occurrence in the Stellar Mass-Metallicity Plane , 2010, 1005.3084.

[69]  K. Griest,et al.  Effect of binary sources on the search for massive astrophysical compact halo objects via microlensing , 1992 .

[70]  D. Lin,et al.  Toward a Deterministic Model of Planetary Formation. I. A Desert in the Mass and Semimajor Axis Distributions of Extrasolar Planets , 2004 .

[71]  Bohdan Paczynski,et al.  Gravitational microlensing by double stars and planetary systems , 1991 .

[72]  Jack J. Lissauer,et al.  Accretion of the gaseous envelope of Jupiter around a 5–10 Earth-mass core , 2005 .

[73]  Rapid Formation of Super-Earths around M Dwarf Stars , 2006, astro-ph/0605061.

[74]  B. Gaudi,et al.  Planetary Detection Efficiency of the Magnification 3000 Microlensing Event OGLE-2004-BLG-343 , 2005, astro-ph/0507079.

[75]  Andrew Gould,et al.  SYSTEMATIC ANALYSIS OF 22 MICROLENSING PARALLAX CANDIDATES , 2005, astro-ph/0506183.

[76]  J. Carpenter Color Transformations for the 2MASS Second Incremental Data Release , 2001, astro-ph/0101463.

[77]  O. Szewczyk,et al.  Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing , 2006, Nature.