Filtering Random Layering Effects in Imaging

Objects that are buried deep in heterogeneous media produce faint echoes which are difficult to distinguish from the backscattered field. Sensor array imaging in such media cannot work unless we filter out the backscattered echoes and enhance the coherent arrivals that carry information about the objects that we wish to image. We study such filters for imaging in strongly backscattering, finely layered media. The filters are based on a travel time transformation of the array data, the normal move-out, used frequently in connection with differential semblance velocity estimation in seismic imaging. In a previous paper [L. Borcea et al., Multiscale Model. Simul., 7 (2009), pp. 1267–1301] we showed that the filters can be used to remove coherent signals from strong plane reflectors. In this paper we show theoretically and with extensive numerical simulations that these filters, based on the normal move-out, can also remove the incoherent arrivals in the array data that are due to fine random layering in the ...

[1]  Josselin Garnier,et al.  Wave Propagation and Time Reversal in Randomly Layered Media , 2007 .

[2]  Benjamin S. White,et al.  Statistics for pulse reflection from a randomly layered medium , 1987 .

[3]  P. Sheng,et al.  Introduction to Wave Scattering, Localization and Mesoscopic Phenomena. Second edition , 1995 .

[4]  Benjamin S. White,et al.  Probing a random medium with a pulse , 1989 .

[5]  Liliana Borcea,et al.  Coherent interferometric imaging in clutter , 2006 .

[6]  George Papanicolaou,et al.  Transport equations for elastic and other waves in random media , 1996 .

[7]  Mark Asch,et al.  Statistical inversion from reflections of spherical waves by a randomly layered medium , 1996 .

[8]  Sergey Fomel,et al.  Poststack velocity analysis by separation and imaging of seismic diffractions , 2007 .

[9]  George Papanicolaou,et al.  Frequency Content of Randomly Scattered Signals , 1991, SIAM Rev..

[10]  G. Papanicolaou,et al.  Stability and Control of Stochastic Systems with Wide-band Noise Disturbances. I , 1978 .

[11]  Liliana Borcea,et al.  Filtering Deterministic Layer Effects in Imaging , 2009, SIAM Rev..

[12]  Jack K. Cohen,et al.  Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion , 2001 .

[13]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[14]  William W. Symes,et al.  All stationary points of differential semblance are asymptotic global minimizers: Layered acoustics 1 , 1999 .

[15]  Benjamin S. White,et al.  Localization and backscattering spectrum of seismic waves in stratified lithology , 1990 .

[16]  W. Marsden I and J , 2012 .

[17]  Jean-Pierre Fouque,et al.  Spreading of a Pulse Travelling in Random Media , 1994 .

[18]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[19]  Sergey Fomel,et al.  Applications of plane-wave destruction filters , 2002 .

[20]  George Papanicolaou,et al.  Ray theory for a locally layered random medium , 2000 .

[21]  F. Collino Perfectly Matched Absorbing Layers for the Paraxial Equations , 1997 .

[22]  Benjamin S. White,et al.  One-dimensional wave propagation in a highly discontinuous medium , 1988 .

[23]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[24]  Biondo L. Biondi,et al.  3D Seismic Imaging , 2006 .

[25]  N. A. Anstey,et al.  Reflections on AMPLITUDES , 1971 .

[26]  Jean-Pierre Fouque,et al.  SPECTRAL ANALYSIS OF RANDOMLY SCATTERED SIGNALS USING THE WAVELET TRANSFORM , 1995 .

[27]  Liliana Borcea,et al.  Adaptive interferometric imaging in clutter and optimal illumination , 2006 .

[28]  B. Borden Mathematical problems in radar inverse scattering , 2002 .

[29]  Eliane Bécache,et al.  Étude d'un nouvel élément fini mixte permettant la condensation de masse , 1997 .

[30]  Liliana Borcea,et al.  Coherent Interferometry in Finely Layered Random Media , 2006, Multiscale Model. Simul..

[31]  William W. Symes,et al.  Velocity inversion by differential semblance optimization , 1991 .

[32]  G. Papanicolaou,et al.  Theory and applications of time reversal and interferometric imaging , 2003 .

[33]  Patrick Joly,et al.  An Analysis of New Mixed Finite Elements for the Approximation of Wave Propagation Problems , 2000, SIAM J. Numer. Anal..

[34]  Jon F. Claerbout,et al.  Fundamentals of Geophysical Data Processing: With Applications to Petroleum Prospecting , 1985 .

[35]  Liliana Borcea,et al.  Asymptotics for the Space-Time Wigner Transform with Applications to Imaging , 2007 .

[36]  W. Brown Synthetic Aperture Radar , 1967, IEEE Transactions on Aerospace and Electronic Systems.

[37]  J. Claerbout Earth Soundings Analysis: Processing Versus Inversion , 1992 .