Chemical and Electrochemical Behaviours of a New Phenolato‐Bridged Complex [(L)MnIIMnII(L)]2+. Pathways to Mononuclear Chlorido [(L)MnII/III/IVCl]0/1/2+ and Dinuclear Mono‐µ‐Oxido [(L)MnIII(µ‐O)MnIII/IV(L)]2+/3+ Species

The X-ray structure of a new dinuclear phenolato-bridged Mn2II complex abbreviated as [(L)MnMn(L)]2+ (1), where LH is the [N4O] phenol containing ligand N,N-bis(2-pyridylmethyl)-N′-salicylidene-ethane-1,2-diamine ligand, is reported. A J value of –3.3 cm–1 (H = –JŜ1·Ŝ2) was determined from the magnetic measurements and the 9.4 GHz EPR spectra of both powder and frozen acetonitrile solution samples were analyzed with temperature. The cyclic voltammetry of 1 displays a reversible anodic wave at E1/2 = 0.46 V vs. SCE associated with the two-electron oxidation of 1 yielding the dinuclear Mn2III complex [(L)MnMn(L)]4+ (2). The easy air oxidation of 1 gives the mono-μ-oxido Mn2III complex [(L)Mn(μ-O)Mn(L)]2+ (3). A rational route to the formation of the mixed-valence Mn2III,IV complex [(L)Mn(μ-O)Mn(L)]3+ (4) starting from 1 by bulk electrolysis at EP = 0.75 V vs. SCE in the presence of one equiv. of base per manganese ion is also briefly reported. Addition of chloride ions to 1 led to the cleavage of the phenolato bridges to give the mononuclear MnII complex [(L)MnCl] (5). Cyclic voltammetry of 5 displays two reversible anodic waves at E1/2 = 0.21 and E1/2 = 1.15 V vs. SCE, assigned to the two successive one-electron abstractions giving the MnIII and MnIV species [(L)MnCl]+ (6) and [(L)MnCl]2+ (7), respectively. The electronic signatures from UV/Visible and EPR spectroscopy of the electrochemically prepared samples of 6 and 7 confirmed the respective oxidation states. For instance, 7 displays a broad and intense absorption band characteristic of a phenolato to MnIV charge-transfer transition at 690 nm (2000 M–1 cm–1) and its 9.4 GHz EPR spectrum shows a strong transition at g = 5.2 consistent with a rhombically distorted S = 3/2 system with a zero-field splitting dominating the Zeeman effect. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)

[1]  J. W. Whittaker,et al.  Structural and Spectroscopic Studies Shed Light on the Mechanism of Oxalate Oxidase* , 2006, Journal of Biological Chemistry.

[2]  A. Aukauloo,et al.  Influence of the electrochemical conversion of [(LH)Mn(II)Cl2] into [(L)Mn(III)Cl]+ on the protonic state of a phenol-containing ligand. , 2006, Inorganic chemistry.

[3]  F. Gonnet,et al.  Chemical access to the mononuclear Mn(III) [(mL)Mn(OMe)]+ complex (mLH = N,N′-bis-(2-pyridylmethyl)-N-(2-hydroxybenzyl)-N′-methyl-ethane-1,2-diamine) and electrochemical oxidation to the Mn(IV) [(mL)Mn(OMe)]2+ species , 2006 .

[4]  E. Rivière,et al.  Synthesis, Structure and Characterisation of a New Trinuclear Di‐μ‐phenolato‐μ‐carboxylato MnIIIMnIIMnIII Complex with a Bulky Pentadentate Ligand: Chemical Access to Mononuclear MnIV–OH Entities , 2005 .

[5]  A. Poulsen,et al.  Water oxidation catalyzed by a dinuclear Mn complex: a functional model for the oxygen-evolving center of photosystem II. , 2005, Angewandte Chemie.

[6]  J. Mahy,et al.  Series of Mn Complexes Based on N‐Centered Ligands and Superoxide – Reactivity in an Anhydrous Medium and SOD‐Like Activity in an Aqueous Medium Correlated to MnII/MnIII Redox Potentials , 2005 .

[7]  C. Policar,et al.  A Pulse Radiolysis Study of Catalytic Superoxide Radical Dismutation by a Manganese(II) Complex with an N‐Tripodal Ligand , 2005 .

[8]  C. Philouze,et al.  Synthesis, structure, and characterization of new mononuclear Mn(II) complexes. Electrochemical conversion into new oxo-bridged Mn(2)(III,IV) complexes. Role of chloride ions. , 2005, Inorganic chemistry.

[9]  D. Christianson Arginase: structure, mechanism, and physiological role in male and female sexual arousal. , 2005, Accounts of chemical research.

[10]  Y. Lindqvist,et al.  The enzymes of oxalate metabolism: unexpected structures and mechanisms. , 2005, Archives of biochemistry and biophysics.

[11]  W. H. Armstrong,et al.  Manganese clusters with relevance to photosystem II. , 2004, Chemical reviews.

[12]  E. Rivière,et al.  Controlled redox conversion of new X-ray-Characterized Mono- and dinuclear heptacoordinated Mn(II) complexes into di-micro-oxo-dimanganese core complexes. , 2004, Inorganic chemistry.

[13]  Laura Bowater,et al.  A Closed Conformation of Bacillus subtilis Oxalate Decarboxylase OxdC Provides Evidence for the True Identity of the Active Site* , 2004, Journal of Biological Chemistry.

[14]  F. Gonnet,et al.  Synthesis, structure, and characterisation of a new phenolato-bridged manganese complex [Mn2(mL)2]2+: chemical and electrochemical access to a new mono-mu-oxo dimanganese core unit. , 2004, Chemistry.

[15]  Anne‐Frances Miller Superoxide dismutases: active sites that save, but a protein that kills. , 2004, Current opinion in chemical biology.

[16]  A. Boussac,et al.  Water Photolysis in Biology , 2004, Science.

[17]  James Barber,et al.  Architecture of the Photosynthetic Oxygen-Evolving Center , 2004, Science.

[18]  A. Rompel,et al.  Tuning the Catalase Activity of Dinuclear Manganese Complexes by Utilizing Different Substituted Tripodal Ligands , 2004 .

[19]  V. Pecoraro,et al.  Structural, spectroscopic, and reactivity models for the manganese catalases. , 2004, Chemical reviews.

[20]  W. Oehlmann,et al.  Cloning and Sequencing of the nrdF Gene of Corynebacterium Ammoniagenes ATCC 6872 Encoding the Functional Metallo-Cofactor of the Manganese-Ribonucleotide Reductase (Mn-RRase) , 1998, Biotechnology Letters.

[21]  K. Wieghardt,et al.  Manganese complexes of mixed O, X, O-donor ligands (X = S or Se): synthesis, characterization and catalytic reactivity , 2003 .

[22]  J. Telser,et al.  High frequency and field EPR spectroscopy of Mn(III) complexes in frozen solutions. , 2003, Journal of magnetic resonance.

[23]  V. Pecoraro,et al.  A structurally characterized monomeric Mn(IV) complex in a discrete N2O4 coordination environment , 2002 .

[24]  Licheng Sun,et al.  Synthesis and Characterization of a Dinuclear Manganese(III,III) Complex with Three Phenolate Ligands , 2002 .

[25]  F. Gonnet,et al.  Synthesis, Structure and Characterisation of New Phenolato-Bridged Manganese Complexes [L2Mn2]2+ − Formation by Ligand Oxidation in LaH [LaH = N-(2-hydroxybenzyl)-N,N′-bis(2-pyridylmethyl)ethane-1,2-diamine] , 2002 .

[26]  V. Pecoraro,et al.  Preparation of highly efficient manganese catalase mimics. , 2002, Inorganic chemistry.

[27]  Licheng Sun,et al.  Synthesis, redox properties, and EPR spectroscopy of manganese(III) complexes of the ligand N,N-bis(2-hydroxybenzyl)-N'-2-hydroxybenzylidene-1,2-diaminoethane: formation of mononuclear, dinuclear, and even higher nuclearity complexes. , 2002, Chemistry.

[28]  S. Teat,et al.  Tuning the optical properties of Prussian blue-like complexes. , 2002, Chemical communications.

[29]  J. Savéant,et al.  Single two-electron transfers vs successive one-electron transfers in polyconjugated systems illustrated by the electrochemical oxidation and reduction of carotenoids. , 2001, Journal of the American Chemical Society.

[30]  R. D. Britt,et al.  Dual-mode EPR study of Mn(III) salen and the Mn(III) salen-catalyzed epoxidation of cis-beta-methylstyrene. , 2001, Journal of the American Chemical Society.

[31]  M. R. Bermejo,et al.  Structural and photolytic studies on new mononuclear and binuclear manganese complexes containing Schiff base ligands. The crystal structure of [Mn(μ-3,5-Brsalpn)(μ-O)]2·2DMF , 2001 .

[32]  A. Deronzier,et al.  A Novel Dimanganese(II) Complex with Two Chloride Bridges − A Two‐Electron Oxidation System , 2001 .

[33]  G. Dismukes,et al.  An evaluation of structural models for the photosynthetic water-oxidizing complex derived from spectroscopic and X-ray diffraction signatures , 2001, JBIC Journal of Biological Inorganic Chemistry.

[34]  V. DeRose,et al.  An electron paramagnetic resonance study of Mn2(H2O)(OAc)4(tmeda)2 (tmeda = N,N,N',N'-tetramethylethylenediamine): a model for dinuclear manganese enzyme active sites. , 2000, Inorganic chemistry.

[35]  R. D. Britt,et al.  Dual-Mode EPR Detects the Initial Intermediate in Photoassembly of the Photosystem II Mn Cluster: The Influence of Amino Acid Residue 170 of the D1 Polypeptide on Mn Coordination , 2000 .

[36]  G. Micera,et al.  Molecular structure and spectral properties of bis(2,6-dimethoxybenzoato)(2,2′:6′,2″-terpyridine)manganese(II): a five-coordinate Mn(II) complex , 2000 .

[37]  H. Sigel,et al.  Manganese and its Role in Biological Processes , 2000, Metal-based drugs.

[38]  V. DeRose,et al.  Mn2+−Nitrogen Interactions in RNA Probed by Electron Spin−Echo Envelope Modulation Spectroscopy: Application to the Hammerhead Ribozyme , 1999 .

[39]  R. D. Britt,et al.  Parallel Polarization EPR Characterization of the Mn(III) Center of Oxidized Manganese Superoxide Dismutase , 1999 .

[40]  T. Mattioli,et al.  A New Manganese Dinuclear Complex with Phenolate Ligands and a Single Unsupported Oxo Bridge. Storage of Two Positive Charges within Less than 500 mV. Relevance to Photosynthesis. , 1999, Inorganic chemistry.

[41]  A. Boussac,et al.  Synthesis, Structure, Electronic, Redox, and Magnetic Properties of a New Mixed‐Valent Mn‐Oxo Cluster: [Mn2III,IVO2(N,Nbispicen)2]3+ (N,Nbispicen = N,N‐bis(2‐pyridylmethyl)‐1,2‐diaminoethane) , 1998 .

[42]  C. Carrano,et al.  Synthesis and Characterization of a Series of Edge-Sharing Octahedral-Tetrahedral-Octahedral Linear Trinuclear Complexes [M(3)(L1O)(4)](2+), Where M = Mn(2+), Co(2+), Ni(2+), Cu(2+), and Zn(2+) and L1OH Is the "Heteroscorpionate" Ligand (2-Hydroxyphenyl)bis(pyrazolyl)methane. , 1998, Inorganic chemistry.

[43]  J. Ribas,et al.  Synthesis, Structural Characterization (X-ray and EXAFS), and Magnetic Properties of Polynuclear Manganese(II) Complexes with Chlorobenzoato Bridges , 1998 .

[44]  E. Gallo,et al.  CARBON-CARBON BONDS FUNCTIONING AS ELECTRON SHUTTLES : THE GENERATION OF ELECTRON-RICH MANGANESE(II)-SCHIFF BASE COMPLEXES AND THEIR REDOX CHEMISTRY , 1997 .

[45]  V. Pecoraro,et al.  The [Mn(2)(2-OHsalpn)(2)](2-,-,0,+) System: Synthesis, Structure, Spectroscopy, and Magnetism of the First Structurally Characterized Dinuclear Manganese Series Containing Four Distinct Oxidation States. , 1997, Inorganic chemistry.

[46]  K. Wieghardt,et al.  Phenoxyl radical complexes of gallium, scandium, iron and manganese. , 1997, Chemistry.

[47]  G. Charles Dismukes,et al.  Manganese Enzymes with Binuclear Active Sites. , 1996, Chemical reviews.

[48]  D. Christianson,et al.  Structure of a unique binuclear manganese cluster in arginase , 1996, Nature.

[49]  T. Bein,et al.  ESR fine structure of manganese ions in zeolite A detects strong variations of the coordination environment , 1996 .

[50]  K. Wieghardt,et al.  Trivalent Transition Metal Complexes [MIII(L-3H)] (M = Fe, Co) of the Triply Deprotonated Hexadentate Ligand 1,4,7-Tris(o-aminobenzyl)-1,4,7-triazacyclononane (L). Crystal Structure of [MnIV(L-3H)]BPh4 , 1995 .

[51]  H. Adams,et al.  A Dinuclear (μ‐Carboxylato)manganese(II) Complex Derived from a Macrocyclic Ligand: A Structural Model for Active Sites in Natural Systems , 1995 .

[52]  V. Pecoraro,et al.  A structurally characterized dichloro-manganese(IV) complex capable of halogenating alkenes , 1995 .

[53]  V. Pecoraro,et al.  Structural and magnetic effects of successive protonations of oxo bridges in high-valent manganese dimers , 1994 .

[54]  T. Stemmler,et al.  Electronic Structure and Spectroscopy of Manganese Catalase and Di-.mu.-oxo [MnIIIMnIV] Model Complexes , 1994 .

[55]  V. Pecoraro,et al.  [Mn(III)(2-OHsalpn)]2 is an efficient functional model for the manganese catalases , 1993 .

[56]  K. Wieghardt,et al.  First-row transition metal complexes of the hexadentate macrocycle 1,4,7-tris(5-tert-butyl-2-hydroxybenzyl)-1,4,7-triazacyclononane (LH3). Crystal structures of [LTiIV]BPh4, [LCrIII], [LFeIII], and [(LH)2FeIII2](ClO4)2.2H2O , 1993 .

[57]  C. Jacobsen,et al.  ESR characterization of trans-diacidatotetrakis(pyridine)vanadium and -manganese trans-VII(py)4X2 and trans-MnII(py)4X2 (X = NCS, Cl, Br, I; py = pyridine) , 1993 .

[58]  A. Neves,et al.  Synthesis, crystal structure, electrochemical, and spectroelectrochemical properties of the new manganese(III) complex [MnIII(BBPEN)][PF6] [H2BBPEN = N,N'-bis(2-hydroxybenzyl)-N,N'-bis(2-methylpyridyl)ethylenediamine] , 1992 .

[59]  D. Collison,et al.  Electron paramagnetic resonance of d transition metal compounds , 1992 .

[60]  V. Pecoraro,et al.  Manganese complexes of .alpha.-hydroxy acids , 1991 .

[61]  Swapan K. Chandra,et al.  A family of mononuclear manganese(IV) complexes: an MnIVO4N2 sphere assembled via phenolate-imine-carboxylate coordination , 1990 .

[62]  M. Chan,et al.  Detection of EPR spectra in S = 2 states of trivalent manganese complexes , 1989 .

[63]  M. Hendrich,et al.  Integer-spin electron paramagnetic resonance of iron proteins. , 1989, Biophysical journal.

[64]  S. S. Isied,et al.  Simulation strategies for unusual EPR spectra of binuclear mixed-valence manganese complexes: synthesis, properties, and x-ray structures of the MnIIMnIII complexes [Mn2(bpmp)(.mu.-OAc)2](ClO4)2.cntdot.H2O and [Mn2(bcmp)(.mu.-OAc)2](ClO4)2.cntdot.CH2Cl2 , 1989 .

[65]  A. Salifoglou,et al.  A new class of bis(.mu.-aryloxy)-bridged dimers with first-row divalent transition-metal ions. Synthesis and structural characterization of the (Et4N)2[M2Cl4(O-C6H4-p-CH3)2] complexes (M = Mn(II), Fe(II), Co(II), Zn(II), and Cd(II)) , 1988 .

[66]  M. Mikuriya,et al.  Syntheses and Characterization of Dinuclear Manganese(II,II) and Manganese(II,III) Complexes with Phenolate and Two Carboxylate Bridges , 1987 .

[67]  V. Pecoraro,et al.  Mononuclear manganese(IV) complexes of hydroxyl-rich Schiff base ligands , 1987 .

[68]  V. Pecoraro,et al.  Characterization of mono- and binuclear manganese(II) Schiff base complexes with metal-disulfide ligation , 1987 .

[69]  G. Christou,et al.  Use of tetra-n-butylammonium permanganate for inorganic syntheses in nonaqueous solvents. Preparation and structure of a manganese(III) dimer containing bridging phenoxo oxygen atoms , 1986 .

[70]  D. T. Sawyer,et al.  Bis(tetramethylammonium) tris(sorbitolato)manganate(IV), an EPR-active monomeric complex of manganese(IV) , 1979 .

[71]  E. Laskowski,et al.  Magnetic exchange interactions in transition-metal dimers. 13. Structural characterization of the two hydrogen bonded manganese(II) dimers [Mn2(tren)2(NCS)2](BPh4)2 and [Mn2(tren)2(NCO)2](BPh4)2. A series of outer-sphere manganese dimers formed from trigonal-bipyramidal manganese(II) complexes , 1978 .

[72]  A. Abragam,et al.  Electron paramagnetic resonance of transition ions , 1970 .

[73]  H. Gerritsen,et al.  Paramagnetic Resonance of Trivalent Manganese in Rutile (TiO2) , 1963 .

[74]  R. Anschütz Beiträge zur Kenntniss der Rechtsweinsäure und Linksäpfelsäure , 1881 .