Sequential Monte Carlo methods for dynamic systems

Abstract We provide a general framework for using Monte Carlo methods in dynamic systems and discuss its wide applications. Under this framework, several currently available techniques are studied and generalized to accommodate more complex features. All of these methods are partial combinations of three ingredients: importance sampling and resampling, rejection sampling, and Markov chain iterations. We provide guidelines on how they should be used and under what circumstance each method is most suitable. Through the analysis of differences and connections, we consolidate these methods into a generic algorithm by combining desirable features. In addition, we propose a general use of Rao-Blackwellization to improve performance. Examples from econometrics and engineering are presented to demonstrate the importance of Rao–Blackwellization and to compare different Monte Carlo procedures.

[1]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[2]  Ray C. Fair,et al.  Methods of Estimation for Markets in Disequilibrium , 1972 .

[3]  Richard E. Quandt,et al.  Econometric disequilibrium models , 1982 .

[4]  H. Scheraga,et al.  Use of buildup and energy‐minimization procedures to compute low‐energy structures of the backbone of enkephalin , 1985, Biopolymers.

[5]  D. Rubin Multiple imputation for nonresponse in surveys , 1989 .

[6]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[7]  A. O'Hagan,et al.  The Calculation of Posterior Distributions by Data Augmentation: Comment , 1987 .

[8]  Richard E. Quandt,et al.  The Econometrics Of Disequilibrium , 1988 .

[9]  M. West,et al.  Bayesian forecasting and dynamic models , 1989 .

[10]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[11]  D. Rubin,et al.  Multiple Imputation for Nonresponse in Surveys , 1989 .

[12]  G. Churchill Stochastic models for heterogeneous DNA sequences. , 1989, Bulletin of mathematical biology.

[13]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[14]  David J. Spiegelhalter,et al.  Sequential updating of conditional probabilities on directed graphical structures , 1990, Networks.

[15]  Michael A. West Mixture Models, Monte Carlo, Bayesian Updating and Dynamic Models , 1992 .

[16]  Nicholas G. Polson,et al.  A Monte Carlo Approach to Nonnormal and Nonlinear State-Space Modeling , 1992 .

[17]  David F. Hendry,et al.  Likelihood Evaluation for Dynamic Latent Variables Models , 1992 .

[18]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[19]  D. Haussler,et al.  Protein modeling using hidden Markov models: analysis of globins , 1993, [1993] Proceedings of the Twenty-sixth Hawaii International Conference on System Sciences.

[20]  A. Kong,et al.  Sequential imputation for multilocus linkage analysis. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Jun S. Liu,et al.  Sequential Imputations and Bayesian Missing Data Problems , 1994 .

[22]  Jun S. Liu,et al.  Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .

[23]  D. Haussler,et al.  Hidden Markov models in computational biology. Applications to protein modeling. , 1993, Journal of molecular biology.

[24]  R. Kohn,et al.  On Gibbs sampling for state space models , 1994 .

[25]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[26]  D. Avitzour Stochastic simulation Bayesian approach to multitarget tracking , 1995 .

[27]  Neil J. Gordon,et al.  Bayesian State Estimation for Tracking and Guidance Using the Bootstrap Filter , 1993 .

[28]  Rong Chen,et al.  Blind restoration of linearly degraded discrete signals by Gibbs sampling , 1995, IEEE Trans. Signal Process..

[29]  Jun S. Liu,et al.  Blind Deconvolution via Sequential Imputations , 1995 .

[30]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[31]  A. Leach Molecular Modelling: Principles and Applications , 1996 .

[32]  Jun S. Liu,et al.  Statistical inference and Monte Carlo algorithms , 1996 .

[33]  Michael Isard,et al.  Contour Tracking by Stochastic Propagation of Conditional Density , 1996, ECCV.

[34]  G. Casella,et al.  Rao-Blackwellisation of sampling schemes , 1996 .

[35]  Jun S. Liu,et al.  Metropolized independent sampling with comparisons to rejection sampling and importance sampling , 1996, Stat. Comput..

[36]  W H Wong,et al.  Dynamic weighting in Monte Carlo and optimization. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[37]  N. G. Best,et al.  Dynamic conditional independence models and Markov chain Monte Carlo methods , 1997 .

[38]  Markus Hürzeler,et al.  Monte Carlo Approximations for General State-Space Models , 1998 .

[39]  G. Peters,et al.  Monte Carlo Approximations for General State-Space Models , 1998 .

[40]  Jun S. Liu,et al.  Rejection Control and Sequential Importance Sampling , 1998 .

[41]  A. F. Neuwald,et al.  Markovian Structures in Biological Sequence , 1999 .

[42]  Jun S. Liu,et al.  Sequential importance sampling for nonparametric Bayes models: The next generation , 1999 .

[43]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[44]  Jun S. Liu,et al.  Markovian structures in biological sequence alignments , 1999 .

[45]  Jun S. Liu,et al.  Sequential importance sampling for , 1999 .