ROBUST CENTERING IN THE FIXED EFFECT PANEL DATA MODEL

In recent years, robust estimators for fixed effect panel data model have been developed to provide alternatives to the least square estimates in the presence of outliers. The robust adaptation involves transformation of data by the median instead of the mean in order to eliminate any unobserved effect. Median centering is chosen due to its robustness, simple derivation and possesses min max property. However, the procedure introduces non-linearity in the data and causes some robust estimators to lose their regression equivariance property. This study proposed MM-centering to provide robust solutions to the Within Group parameter estimates. The numerical results indicate that the proposed methods are more efficient than the existing method.

[1]  F. Hampel A General Qualitative Definition of Robustness , 1971 .

[2]  Peter Rousseeuw,et al.  Econometric Applications of High-Breakdown Robust Regression Techniques , 2017, 1709.00181.

[3]  Rien J. L. M. Wagenvoort,et al.  On B-robust Instrumental Variable Estimation of the Linear Model with Panel Data , 2002 .

[4]  Douglas C. Montgomery,et al.  THE DEVELOPMENT AND EVALUATION OF ALTERNATIVE GENERALIZED M-ESTIMATION TECHNIQUES , 1998 .

[5]  Joachim Wagner,et al.  Robust Estimation of Linear Fixed Effects Panel Data Models with an Application to the Exporter Productivity Premium , 2010, SSRN Electronic Journal.

[6]  V. Yohai,et al.  A Fast Algorithm for S-Regression Estimates , 2006 .

[7]  Andre Lucas,et al.  Outlier Robust Gmm Estimation of Leverage Determinants in Linear Dynamic Panel Data Models , 1997 .

[8]  V. Yohai,et al.  Robust Statistics: Theory and Methods , 2006 .

[9]  Peter J. Rousseeuw,et al.  Applying robust regression to insurance , 1984 .

[10]  Patrick Sevestre,et al.  The Econometrics of Panel Data , 1993 .

[11]  Stephen Portnoy,et al.  Reweighted LS Estimators Converge at the same Rate as the Initial Estimator , 1992 .

[12]  J. Stock,et al.  Heteroskedasticity-Robust Standard Errors for Fixed Effects Panel Data Regression , 2006 .

[13]  Hossein Riazoshams,et al.  The Performance of Robust Two-Stage Estimator in Nonlinear Regression with Autocorrelated Error , 2010 .

[14]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[15]  D. Ruppert Computing S Estimators for Regression and Multivariate Location/Dispersion , 1992 .

[16]  P. Rousseeuw,et al.  Unmasking Multivariate Outliers and Leverage Points , 1990 .

[17]  M. Arellano,et al.  Computing Robust Standard Errors for Within-Groups Estimators , 2009 .

[18]  V. Yohai HIGH BREAKDOWN-POINT AND HIGH EFFICIENCY ROBUST ESTIMATES FOR REGRESSION , 1987 .

[19]  Christine H. Müller,et al.  High Breakdown Point and High Efficiency , 1997 .

[20]  H. Midi,et al.  Robust Estimations as a Remedy for Multicollinearity Caused by Multiple High Leverage Points , 2009 .

[21]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[22]  Arie Preminger,et al.  Forecasting Exchange Rates: A Robust Regression Approach , 2005 .

[23]  G. Kézdi Robust Standard Error Estimation in Fixed-Effects Panel Models , 2003 .

[24]  Maria Caterina Bramati,et al.  Robust Estimators for the Fixed Effects Panel Data Model , 2007 .

[25]  Frank Hampel,et al.  Robust statistics: a brief introduction and overview , 2001 .