Recovering information in probabilistic quantum teleportation

In this paper we redesign the probabilistic teleportation scheme considered in Phys. Rev. A61, 034301 (2000) by Wan-Li Li et al., where the optimal state extraction protocol complements the basic teleportation process with a partially entangled pure state channel, in order to transfer the unknown state with fidelity 1. Unlike that scheme, where the information of the unknown state is lost if the state extraction fails, our proposal teleports exactly and optimally an unknown state, and allows to recover faithfully that state when the process has not succeeded. In order to study the resilience of the scheme, we apply it to the teleportation problem through a quantum channel in a mixed state with pure dephasing. We find that a successful process transfers an unfaithful state, namely, the outcome state acquires the decoherence of the channel, but the unknown state is recovered by the sender with fidelity 1 if the teleportation fails. In addition, in this case, the fidelity of the teleported state has quantum features only if the channel has an amount of entanglement different from zero.

[1]  W. Wootters,et al.  Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.

[2]  Tal Mor,et al.  Teleportation via generalized measurements, and conclusive teleportation , 1999 .

[3]  Nicolas Gisin,et al.  Quantum-teleportation experiments turn 20 , 2017, Nature.

[4]  M. Horodecki,et al.  General teleportation channel, singlet fraction and quasi-distillation , 1998, quant-ph/9807091.

[5]  Taghi Rashvand,et al.  Teleporting an unknown quantum state with unit fidelity and unit probability via a non-maximally entangled channel and an auxiliary system , 2016, Quantum Inf. Process..

[6]  Bin Sheng,et al.  Multi-hop teleportation in a quantum network based on mesh topology , 2018 .

[7]  Kan Wang,et al.  Two-qubit entangled state teleportation via optimal POVM and partially entangled GHZ state , 2018 .

[8]  L. Roa,et al.  The joint measurement entanglement can significantly offset the effect of a noisy channel in teleportation , 2018 .

[9]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[10]  G. Falci,et al.  Entanglement degradation in the solid state: interplay of adiabatic and quantum noise , 2010 .

[11]  Xutao Yu,et al.  Partially entangled states bridge in quantum teleportation , 2014 .

[12]  Arun K. Pati,et al.  Probabilistic Quantum Teleportation , 2002, quant-ph/0210004.

[13]  J. Eisert,et al.  Advances in quantum teleportation , 2015, Nature Photonics.

[14]  Gilles Brassard,et al.  Teleportation as a quantum computation , 1998 .

[15]  Guang-Can Guo,et al.  Probabilistic teleportation and entanglement matching , 2000 .

[16]  Li-Yi Hsu Optimal information extraction in probabilistic teleportation , 2002 .

[17]  Zai-Chen Zhang,et al.  Multiple teleportation via partially entangled GHZ state , 2016 .

[18]  F. Martini,et al.  Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels , 1997, quant-ph/9710013.

[19]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[20]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[21]  Giuseppe Compagno,et al.  Indistinguishability of Elementary Systems as a Resource for Quantum Information Processing. , 2017, Physical review letters.

[22]  J. Skinner,et al.  Pure dephasing of a two-level system , 1986 .

[23]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[24]  Jian-Wei Pan,et al.  Ground-to-satellite quantum teleportation , 2017, Nature.

[25]  Jian-Wei Pan,et al.  Quantum teleportation of multiple degrees of freedom of a single photon , 2015, Nature.

[26]  Luis Roa,et al.  Probabilistic teleportation without loss of information , 2015 .

[27]  Babatunde James Falaye,et al.  Quantum teleportation and information splitting via four-qubit cluster state and a Bell state , 2017, 1703.01667.

[28]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[29]  G. Adesso,et al.  Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence , 2013, 1304.1163.

[30]  S. Bandyopadhyay Teleportation and secret sharing with pure entangled states , 2000, quant-ph/0002032.

[31]  Liang Jiang,et al.  Deterministic teleportation of a quantum gate between two logical qubits , 2018, Nature.

[32]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[33]  Ariana Muñoz,et al.  Threefold entanglement matching , 2015, Quantum Inf. Process..

[34]  L. Roa,et al.  Entanglement thresholds for displaying the quantum nature of teleportation , 2015, 1508.01417.

[35]  L. Roa,et al.  Optimal conclusive teleportation of quantum states , 2003, quant-ph/0304002.

[36]  G. Compagno,et al.  Connection among entanglement, mixedness, and nonlocality in a dynamical context , 2010, 1003.5153.

[37]  Frank K. Wilhelm,et al.  Quantum oscillations in the spin-boson model: reduced visibility from non-Markovian effects and initial entanglement , 2008 .

[38]  Heng Shen,et al.  Deterministic quantum teleportation between distant atomic objects , 2012, Nature Physics.

[39]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[40]  Shuntaro Takeda,et al.  Deterministic quantum teleportation of photonic quantum bits by a hybrid technique , 2013, Nature.