The ancient evolutionary origins of Scleractinia revealed by azooxanthellate corals

[1]  A. Cook,et al.  Australian Cretaceous Cnidaria and Porifera , 2011 .

[2]  S. Cairns,et al.  A unique skeletal microstructure of the deep‐sea micrabaciid scleractinian corals , 2010, Journal of morphology.

[3]  S. Cairns,et al.  A Comprehensive Phylogenetic Analysis of the Scleractinia (Cnidaria, Anthozoa) Based on Mitochondrial CO1 Sequence Data , 2010, PloS one.

[4]  H. Lasker,et al.  Repeated loss of coloniality and symbiosis in scleractinian corals , 2010, Proceedings of the National Academy of Sciences.

[5]  S. Cairns,et al.  Monophyletic origin of Caryophyllia (Scleractinia, Caryophylliidae), with descriptions of six new species , 2010 .

[6]  K. Peterson,et al.  Where's the glass? Biomarkers, molecular clocks, and microRNAs suggest a 200‐Myr missing Precambrian fossil record of siliceous sponge spicules , 2010, Geobiology.

[7]  David K Yeates,et al.  Single-copy nuclear genes resolve the phylogeny of the holometabolous insects , 2009, BMC Biology.

[8]  G. Stanley,et al.  The Evolution of the Coral–Algal Symbiosis , 2009 .

[9]  N. Knowlton,et al.  Mitochondrial and Nuclear Genes Suggest that Stony Corals Are Monophyletic but Most Families of Stony Corals Are Not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria) , 2008, PloS one.

[10]  C. Cunningham,et al.  From Offshore to Onshore: Multiple Origins of Shallow-Water Corals from Deep-Sea Ancestors , 2008, PloS one.

[11]  F. Houlbrèque,et al.  Compositional variations at ultra-structure length scales in coral skeleton , 2008 .

[12]  F. Houlbrèque,et al.  Biological forcing controls the chemistry of reef‐building coral skeleton , 2007 .

[13]  S. Cairns Deep-water corals: An overview with special reference to diversity and distribution of deep-water scleractinian corals , 2007 .

[14]  J. Boore,et al.  Naked corals: skeleton loss in Scleractinia. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[15]  G. Layne,et al.  Application of secondary ion mass spectrometry to the determination of Mg/Ca in rare, delicate, or altered planktonic foraminifera: Examples from the Holocene, Paleogene, and Cretaceous , 2005 .

[16]  Xiaoya Ma,et al.  Cambrian anemones with preserved soft tissue from the Chengjiang biota, China , 2005 .

[17]  R. Dunbar,et al.  Distribution of magnesium in coral skeleton , 2004 .

[18]  Harry F. Filkorn,et al.  A NEW EARLY CRETACEOUS CORAL (ANTHOZOA; SCLERACTINIA; DENDROPHYLLIINA) AND ITS EVOLUTIONARY SIGNIFICANCE , 2004, Journal of Paleontology.

[19]  Geoffrey J. Barton,et al.  The Jalview Java alignment editor , 2004, Bioinform..

[20]  A. Rogers,et al.  A deep-sea slant on the molecular phylogeny of the Scleractinia. , 2004, Molecular phylogenetics and evolution.

[21]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[22]  G. Stanley The evolution of modern corals and their early history , 2003 .

[23]  J. Stolarski Three-dimensional micro- and nanostructural characteristics of the scleractinian coral skeleton: A biocalcification proxy , 2003 .

[24]  Yong Wang,et al.  An index of substitution saturation and its application. , 2003, Molecular phylogenetics and evolution.

[25]  Xuhua Xia,et al.  Data Analysis in Molecular Biology and Evolution , 2002, Springer US.

[26]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[27]  X. Xia,et al.  DAMBE: software package for data analysis in molecular biology and evolution. , 2001, The Journal of heredity.

[28]  D. Fautin,et al.  The Origins of Modern Corals , 2001, Science.

[29]  Chaolun Allen Chen,et al.  Strategies for Amplification by Polymerase Chain Reaction of the Complete Sequence of the Gene Encoding Nuclear Large Subunit Ribosomal RNA in Corals , 2000, Marine Biotechnology.

[30]  Y. Ezaki Palaeoecological and phylogenetic implications of a new scleractiniamorph genus from Permian sponge reefs, south China , 2000 .

[31]  Chaolun Allen Chen,et al.  Universal Primers for Amplification of Mitochondrial Small Subunit Ribosomal RNA-Encoding Gene in Scleractinian Corals , 2000, Marine Biotechnology.

[32]  S. Cairns,et al.  Molecular phylogenetic hypotheses for the evolution of scleractinian corals , 2000 .

[33]  Y. Ezaki Paleozoic Scleractinia: progenitors or extinct experiments? , 1998, Paleobiology.

[34]  S. Cairns A generic revision and phylogenetic analysis of the Dendrophylliidae (Cnidaria:Scleractinia) , 1997 .

[35]  R. Fensome,et al.  Fossil dinoflagellate diversity, originations, and extinctions and their significance , 1996 .

[36]  S. Palumbi,et al.  Evolution of Scleractinian Corals Inferred from Molecular Systematics , 1996, Science.

[37]  J. Stolarski Gardineria - a scleractinian living fossil , 1996 .

[38]  R. Vrijenhoek,et al.  DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. , 1994, Molecular marine biology and biotechnology.

[39]  D. Harper,et al.  Ordovician faunas in mass-flow deposits, Southern Scotland , 1992 .

[40]  Die oberjurassische Korallenfauna von Wuerttemberg , 1954 .

[41]  J. Durham,et al.  CORALS FROM THE GULF OF CALIFORNIA AND THE NORTH PACIFIC COAST OF AMERICA , 1947 .

[42]  T. W. Vaughan,et al.  Revision of the Suborders Families, and Genera of the Scleractinia , 1943 .

[43]  O. H. Schindewolf Zur Kenntnis der Polycoelien und Plerophyllen , 1942 .