Stokes equations with penalised slip boundary conditions

We consider the finite-element approximation of Stokes equations with slip boundary conditions imposed with the penalty method. In the case of a smooth curved boundary, our numerical results suggest that curved finite elements, regularised normal vectors or reduced integration techniques can be used to avoid a Babuska’s-type paradox and ensure the convergence of finite-element approximations to the exact solution. Convergence orders with these remedies are also compared.

[1]  P. Knobloch A finite element convergence analysis for 3D Stokes equations in case of variational crimes , 2000 .

[2]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[3]  K. Deckelnick,et al.  Optimal error Estimates for the Stokes and Navier–Stokes equations with slip–boundary condition , 1999 .

[4]  C. Cuvelier,et al.  Thermocapillary free boundaries in crystal growth , 1986, Journal of Fluid Mechanics.

[5]  Atife Caglar,et al.  Weak imposition of boundary conditions for the Navier―Stokes equations by a penalty method , 2009 .

[6]  Zhong-Ci Shi On the convergence rate of the boundary penalty method , 1984 .

[7]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[8]  R. Verfürth Finite element approximation on incompressible Navier-Stokes equations with slip boundary condition , 1987 .

[9]  D. J. Dailey,et al.  FOR ITS APPLICATIONS , 1998 .

[10]  M. P. Rossow Observations on Numerical Modeling of an Obtuse Corner of a Simply Supported Plate , 1978 .

[11]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[12]  L. R. Scott Survey of displacement methods for the plate bending problem , 1976 .

[13]  A. K. Rao,et al.  On the Polygon-Circle Paradox , 1981 .

[14]  Philippe G. Ciarlet,et al.  A Mixed Finite Element Method for the Biharmonic Equation , 1974 .

[15]  Philip M. Gresho,et al.  The implementation of normal and/or tangential boundary conditions in finite element codes for incompressible fluid flow , 1982 .

[16]  R. Verfürth Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition II , 1991 .

[17]  L. Scriven,et al.  Coating flow theory by finite element and asymptotic analysis of the navier-stokes system , 1984 .

[18]  Hans-Jürgen Butt,et al.  Boundary slip in Newtonian liquids: a review of experimental studies , 2005 .

[19]  R. Verfürth Finite element approximation of steady Navier-Stokes equations with mixed boundary conditions , 1985 .

[20]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[21]  Two mixed finite element methods for the simply supported plate problem , 1983 .

[22]  Graham F. Carey,et al.  Penalty resolution of the babuska circle paradox , 1983 .

[23]  E. Christiansen,et al.  Handbook of Numerical Analysis , 1996 .

[24]  Andro Mikelić,et al.  On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions , 1998 .

[25]  I. Babuska The Finite Element Method with Penalty , 1973 .

[26]  Graham F. Carey,et al.  Boundary penalty techniques , 1982 .

[27]  J. Karlovský,et al.  On an Esaki diode having the curvature coefficient greater thane/kT , 1961 .

[28]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[29]  Peter Monk,et al.  A mixed finite element method for the biharmonic equation , 1987 .

[30]  S A Nazarov,et al.  PARADOXES OF LIMIT PASSAGE IN SOLUTIONS OF BOUNDARY VALUE PROBLEMS INVOLVING THE APPROXIMATION OF SMOOTH DOMAINS BY POLYGONAL DOMAINS , 1987 .