Stokes equations with penalised slip boundary conditions
暂无分享,去创建一个
[1] P. Knobloch. A finite element convergence analysis for 3D Stokes equations in case of variational crimes , 2000 .
[2] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[3] K. Deckelnick,et al. Optimal error Estimates for the Stokes and Navier–Stokes equations with slip–boundary condition , 1999 .
[4] C. Cuvelier,et al. Thermocapillary free boundaries in crystal growth , 1986, Journal of Fluid Mechanics.
[5] Atife Caglar,et al. Weak imposition of boundary conditions for the Navier―Stokes equations by a penalty method , 2009 .
[6] Zhong-Ci Shi. On the convergence rate of the boundary penalty method , 1984 .
[7] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[8] R. Verfürth. Finite element approximation on incompressible Navier-Stokes equations with slip boundary condition , 1987 .
[9] D. J. Dailey,et al. FOR ITS APPLICATIONS , 1998 .
[10] M. P. Rossow. Observations on Numerical Modeling of an Obtuse Corner of a Simply Supported Plate , 1978 .
[11] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[12] L. R. Scott. Survey of displacement methods for the plate bending problem , 1976 .
[13] A. K. Rao,et al. On the Polygon-Circle Paradox , 1981 .
[14] Philippe G. Ciarlet,et al. A Mixed Finite Element Method for the Biharmonic Equation , 1974 .
[15] Philip M. Gresho,et al. The implementation of normal and/or tangential boundary conditions in finite element codes for incompressible fluid flow , 1982 .
[16] R. Verfürth. Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition II , 1991 .
[17] L. Scriven,et al. Coating flow theory by finite element and asymptotic analysis of the navier-stokes system , 1984 .
[18] Hans-Jürgen Butt,et al. Boundary slip in Newtonian liquids: a review of experimental studies , 2005 .
[19] R. Verfürth. Finite element approximation of steady Navier-Stokes equations with mixed boundary conditions , 1985 .
[20] J. Oden,et al. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .
[21] Two mixed finite element methods for the simply supported plate problem , 1983 .
[22] Graham F. Carey,et al. Penalty resolution of the babuska circle paradox , 1983 .
[23] E. Christiansen,et al. Handbook of Numerical Analysis , 1996 .
[24] Andro Mikelić,et al. On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions , 1998 .
[25] I. Babuska. The Finite Element Method with Penalty , 1973 .
[26] Graham F. Carey,et al. Boundary penalty techniques , 1982 .
[27] J. Karlovský,et al. On an Esaki diode having the curvature coefficient greater thane/kT , 1961 .
[28] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[29] Peter Monk,et al. A mixed finite element method for the biharmonic equation , 1987 .
[30] S A Nazarov,et al. PARADOXES OF LIMIT PASSAGE IN SOLUTIONS OF BOUNDARY VALUE PROBLEMS INVOLVING THE APPROXIMATION OF SMOOTH DOMAINS BY POLYGONAL DOMAINS , 1987 .