Effects of a parameter mismatch on the Synchronization of Two Coupled Chaotic oscillators

Considering two identical, coupled Rossler systems, the paper first examines the bifurcations through which low-periodic orbits embedded into the synchronized chaotic state lose their transverse stability and produce the characteristic picture of riddled basins of attraction. The paper hereafter addresses the issue of the robustness of the synchronized chaotic state to a mismatch of the parameter values between the two subsystems. It is shown that the synchronized state is shifted away from the symmetric manifold, and the magnitude of this shift is expressed in terms of the coupling strength and the mismatch parameter. Finally, the paper illustrates how similar phenomena can be observed in a system of two coupled chaotic oscillators describing the spiking behavior of biological cells.

[1]  Ott,et al.  Optimal periodic orbits of chaotic systems. , 1996, Physical review letters.

[2]  Nikolai F. Rulkov,et al.  EXPERIMENTAL EVIDENCE FOR SYNCHRONOUS BEHAVIOR OF CHAOTIC NONLINEAR OSCILLATORS WITH UNIDIRECTIONAL OR MUTUAL DRIVING , 1994 .

[3]  C. Wetterich,et al.  Time evolution of the cosmological “constant” , 1987 .

[4]  E. Mosekilde,et al.  Bifurcations in two coupled Ro¨ssler systems , 1996 .

[5]  L. Orci,et al.  THE TOPOGRAPHY OF ELECTRICAL SYNCHRONY AMONG β‐CELLS IN THE MOUSE ISLET OF LANGERHANS , 1984 .

[6]  Erik Mosekilde,et al.  Role of the Absorbing Area in Chaotic Synchronization , 1998 .

[7]  Niels-Henrik Holstein-Rathlou,et al.  Parallel computer simulation of nearest-neighbour interaction in a system of nephrons , 1989, Parallel Comput..

[8]  I. Stewart,et al.  From attractor to chaotic saddle: a tale of transverse instability , 1996 .

[9]  Louis M. Pecora,et al.  Fundamentals of synchronization in chaotic systems, concepts, and applications. , 1997, Chaos.

[10]  A. Volkovskii Synchronization of chaotic systems using phase control , 1997 .

[11]  J. Milnor On the concept of attractor , 1985 .

[12]  Teresa Ree Chay,et al.  Chaos in a three-variable model of an excitable cell , 1985 .

[13]  N. Rulkov,et al.  Robustness of Synchronized Chaotic Oscillations , 1997 .

[14]  A. Sherman,et al.  Diffusively coupled bursters: Effects of cell heterogeneity , 1998 .

[15]  Kunihiko Kaneko,et al.  Relevance of dynamic clustering to biological networks , 1993, chao-dyn/9311008.

[16]  Bock,et al.  Search for the decay KL0--> pi 0 pi 0 gamma. , 1994, Physical review. D, Particles and fields.

[17]  Alexander L. Fradkov,et al.  Adaptive synchronization of chaotic systems based on speed gradient method and passification , 1997 .

[18]  T. Carroll,et al.  Synchronization and Imposed Bifurcations in the Presence of Large Parameter Mismatch , 1998 .

[19]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[20]  J. Rinzel,et al.  Model for synchronization of pancreatic beta-cells by gap junction coupling. , 1991, Biophysical journal.

[21]  Nikolai F. Rulkov,et al.  Images of synchronized chaos: Experiments with circuits. , 1996, Chaos.

[22]  M. Rosenblum,et al.  Phase synchronization in driven and coupled chaotic oscillators , 1997 .

[23]  Roy,et al.  Experimental synchronization of chaotic lasers. , 1994, Physical review letters.

[24]  O. Rössler An equation for continuous chaos , 1976 .

[25]  Michael Peter Kennedy,et al.  The role of synchronization in digital communications using chaos. I . Fundamentals of digital communications , 1997 .

[26]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems , 1983 .

[27]  J. Suykens,et al.  Robust nonlinear H/sub /spl infin// synchronization of chaotic Lur'e systems , 1997 .

[28]  A. Sherman Anti-phase, asymmetric and aperiodic oscillations in excitable cells--I. Coupled bursters. , 1994, Bulletin of mathematical biology.

[29]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[30]  Erhard Kisker,et al.  Spin-flip low-energy electron-exchange scattering in NiO(100) , 1994 .

[31]  N. Rulkov,et al.  MUTUAL SYNCHRONIZATION OF CHAOTIC SELF-OSCILLATORS WITH DISSIPATIVE COUPLING , 1992 .

[32]  I. Stewart,et al.  Bubbling of attractors and synchronisation of chaotic oscillators , 1994 .

[33]  Vogel,et al.  Unbalanced homodyning for quantum state measurements. , 1996, Physical review. A, Atomic, molecular, and optical physics.