Markov Processes and Markov Families

In this section we shall use intuitive arguments in order to find the distribution of M T . Rigorous arguments will be provided later in this chapter, after we introduce the notion of a strong Markov family. Thus, the problem at hand may serve as a simple example motivating the study of the strong Markov property.

[1]  Areski Cousin,et al.  Dynamic Hedging of Portfolio Credit Risk in a Markov Copula Model , 2013, Journal of Optimization Theory and Applications.

[2]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[3]  Emmanuel Bacry,et al.  Hawkes model for price and trades high-frequency dynamics , 2013, 1301.1135.

[4]  J. Jacod Multivariate point processes: predictable projection, Radon-Nikodym derivatives, representation of martingales , 1975 .

[5]  Marco Scarsini,et al.  Copulae of probability measures on product spaces , 1989 .

[6]  Daniel W. Stroock,et al.  Diffusion processes associated with Lévy generators , 1975 .

[7]  T. Bielecki,et al.  A Markov copulae approach to pricing and hedging of credit index derivatives and ratings triggered step-up bonds , 2008 .

[8]  P. Reynaud-Bouret,et al.  Adaptive estimation for Hawkes processes; application to genome analysis , 2009, 0903.2919.

[9]  N. Jacob Characteristic Functions and Symbols in the Theory of Feller Processes , 1998 .

[10]  A Class of F-Doubly Stochastic Markov Chains , 2010 .

[11]  Emmanuel Bacry,et al.  Modelling microstructure noise with mutually exciting point processes , 2011, 1101.3422.

[12]  Two results on jump processes , 1984 .

[13]  A. Hawkes Spectra of some self-exciting and mutually exciting point processes , 1971 .

[14]  Philip Protter,et al.  Local martingales and filtration shrinkage , 2011 .

[15]  Jian Wang,et al.  Lévy Matters III , 2013 .

[16]  P. Brémaud Point Processes and Queues , 1981 .

[17]  T. Bielecki,et al.  Chapter 11 Valuation of Basket Credit Derivatives in the Credit Migrations Environment , 2005 .

[18]  M. Abdel-Hameed Inspection and maintenance policies of devices subject to deterioration , 1987, Advances in Applied Probability.

[19]  F. Biagini,et al.  Intensity-based premium evaluation for unemployment insurance products , 2013 .

[20]  Jacek Jakubowski,et al.  Dynamic Modeling of Dependence in Finance via Copulae Between Stochastic Processes , 2010 .

[21]  S. Blanes,et al.  The Magnus expansion and some of its applications , 2008, 0810.5488.

[22]  C. Granger Investigating Causal Relations by Econometric Models and Cross-Spectral Methods , 1969 .

[23]  M. Rao On modification theorems , 1972 .

[24]  Shinzo Watanabe On discontinuous additive functionals and Lévy measures of a Markov process , 1964 .

[25]  Thomas Josef Liniger,et al.  Multivariate Hawkes processes , 2009 .

[26]  Satish Iyengar,et al.  The Analysis of Multiple Neural Spike Trains , 2003, Advances on Methodological and Applied Aspects of Probability and Statistics.

[27]  Christophe Stricker,et al.  Quasimartingales, martingales locales, semimartingales et filtration naturelle , 1977 .

[28]  Laurent Massoulié,et al.  Stability results for a general class of interacting point processes dynamics, and applications , 1998 .

[29]  M. Rosenblatt,et al.  A MARKOVIAN FUNCTION OF A MARKOV CHAIN , 1958 .

[30]  Vincent Rivoirard,et al.  Inference of functional connectivity in Neurosciences via Hawkes processes , 2013, 2013 IEEE Global Conference on Signal and Information Processing.

[31]  Y. Ogata Space-Time Point-Process Models for Earthquake Occurrences , 1998 .

[32]  Y. Ogata Seismicity Analysis through Point-process Modeling: A Review , 1999 .

[33]  Jacek Jakubowski,et al.  Study of Dependence for Some Stochastic Processes , 2008 .

[34]  Lingjiong Zhu Nonlinear Hawkes Processes , 2013, 1304.7531.

[35]  Jürgen Amendinger,et al.  Martingale representation theorems for initially enlarged filtrations , 2000 .

[36]  Edward Hoyle,et al.  Archimedean survival processes , 2013, J. Multivar. Anal..

[37]  P. Brémaud,et al.  STABILITY OF NONLINEAR HAWKES PROCESSES , 1996 .

[38]  E. Bacry,et al.  Some limit theorems for Hawkes processes and application to financial statistics , 2013 .

[40]  Frank Ball,et al.  Continuous-time Markov chains in a random environment, with applications to ion channel modelling , 1994, Advances in Applied Probability.

[41]  T. Kurtz Martingale Problems for Conditional Distributions of Markov Processes , 1998 .

[42]  George E. Tita,et al.  Self-Exciting Point Process Modeling of Crime , 2011 .

[43]  D. Duffie,et al.  Affine Processes and Application in Finance , 2002 .

[44]  Jan M. van Noortwijk,et al.  A survey of the application of gamma processes in maintenance , 2009, Reliab. Eng. Syst. Saf..

[45]  N. Jacob,et al.  Pseudo Differential Operators and Markov Processes: Volume I: Fourier Analysis and Semigroups , 2001 .

[46]  René L. Schilling,et al.  Growth and Hölder conditions for the sample paths of Feller processes , 1998 .

[47]  P. Tankov,et al.  Characterization of dependence of multidimensional Lévy processes using Lévy copulas , 2006 .

[48]  David Oakes,et al.  The Markovian self-exciting process , 1975, Journal of Applied Probability.

[49]  Florin Avram,et al.  A two-dimensional ruin problem on the positive quadrant, with exponential claims: Feynman- Kac formula, Laplace transform and its inversion , 2007, 0711.2465.

[50]  L. Hughston,et al.  Lévy random bridges and the modelling of financial information , 2009, 0912.3652.

[51]  V. Nollau,et al.  The Symbol of a Markov Semimartingale , 2009 .