Linear Matrix Inequality Techniques in Optimal Control

[1]  Robert E. Skelton,et al.  Integrating Information Architecture and Control or Estimation Design , 2008 .

[2]  C. Scherer Mixed H2/H∞ Control , 1995 .

[3]  Max Donath,et al.  American Control Conference , 1993 .

[4]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[5]  Fernando Paganini,et al.  A Course in Robust Control Theory , 2000 .

[6]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[7]  T. Iwasaki,et al.  Generalized S-procedure and finite frequency KYP lemma , 2000 .

[8]  R. Skelton,et al.  “Convexifying” Linear Matrix Inequality Methods for Integrating Structure and Control Design , 2003 .

[9]  Robert E. Skelton,et al.  Stability tests for constrained linear systems , 2001 .

[10]  Jieping Ye,et al.  Matrix Inequalities: A Symbolic Procedure to Determine Convexity Automatically , 2003, Integral Equations and Operator Theory.

[11]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[12]  Karolos M. Grigoriadis,et al.  A Unified Algebraic Approach To Control Design , 1997 .

[13]  Guoming G. Zhu,et al.  A Convergent Algorithm for the Output Covariance Constraint Control Problem , 1997 .

[14]  S. O. Reza Moheimani,et al.  Perspectives in robust control , 2001 .

[15]  A. Packard,et al.  Linear matrix inequalities in analysis with multipliers , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[16]  Alberto Isidori,et al.  Trends in Control: A European Perspective , 2012 .

[17]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[18]  G. Dullerud,et al.  A Course in Robust Control Theory: A Convex Approach , 2005 .

[19]  William Rowan Hamilton Second Essay on a General Method in Dynamics. [Abstract] , 1830 .

[20]  J. Geromel,et al.  Extended H 2 and H norm characterizations and controller parametrizations for discrete-time systems , 2002 .

[21]  Tetsuya Iwasaki,et al.  All controllers for the general H∞ control problem: LMI existence conditions and state space formulas , 1994, Autom..

[22]  Dante C. Youla,et al.  Modern Wiener-Hopf Design of Optimal Controllers. Part I , 1976 .

[23]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[24]  P. Khargonekar,et al.  Mixed H/sub 2//H/sub infinity / control: a convex optimization approach , 1991 .

[25]  R. Skelton,et al.  A Two-Riccati, Feasible Algorithm for Guaranteeing Output L, Constraints , 1992 .

[26]  W. Hamilton XV. On a general method in dynamics; by which the study of the motions of all free systems of attracting or repelling points is reduced to the search and differentiation of one central relation, or characteristic function , 1834, Philosophical Transactions of the Royal Society of London.