Elasto-mechanical characterisation of yew and spruce wood with regard to structure-property relationships
暂无分享,去创建一个
[1] Voichita Bucur,et al. Acoustics of Wood , 1995 .
[2] P. Niemz,et al. Three-dimensional elastic behaviour of common yew and Norway spruce , 2008, Wood Science and Technology.
[3] R. A. Cockrell. A comparison of latewood pits, fibril orientation, and shrinkage of normal and compression wood of giant sequoia , 1974, Wood Science and Technology.
[4] Paul Roschger,et al. Position-Resolved Small-Angle X-ray Scattering of Complex Biological Materials , 1997 .
[5] Alain Dufresne,et al. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. , 2005, Biomacromolecules.
[6] R. Astley,et al. Modelling the elastic properties of softwood , 2009, Holz als Roh- und Werkstoff.
[7] Paul Gatenholm,et al. Biomimetic engineering of cellulose-based materials. , 2007, Trends in biotechnology.
[8] L. Salmén,et al. Variations in Transverse Fibre Wall Properties: Relations Between Elastic Properties and Structure , 2000 .
[9] L. Salmén,et al. Cell wall properties and their effects on the mechanical properties of fibers , 2002 .
[10] A. Wardrop,et al. Some aspects of wood anatomy in relation to pulping quality and to tree breeding. , 1960 .
[11] George Jeronimidis,et al. Composites with high work of fracture , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[12] Manjusri Misra,et al. Surface modifications of natural fibers and performance of the resulting biocomposites: An overview , 2001 .
[13] V. Bucur,et al. Elastic constants for wood by an ultrasonic method , 1984, Wood Science and Technology.
[14] P. Fratzl,et al. Determination of spiral angles of elementary fibrils in the wood cell wall: comparison of small-angle X-ray scattering and wide-angle X-ray diffraction. , 1998 .
[15] D. Kamdem,et al. Influence of wood extractives on moisture sorption and wettability of red oak (Quercus rubra), black cherry (Prunus serotina), and red pine (Pinus resinosa) , 2007 .
[16] Jozsef Bodig,et al. Mechanics of Wood and Wood Composites , 1982 .
[17] J. Sugiyama,et al. Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment , 1990 .
[18] S. Stanzl-Tschegg,et al. Detection of the Fracture Path under Tensile Loads through in situ Tests in an ESEM Chamber , 2003 .
[19] S. Stanzl-Tschegg,et al. Properties of chemically and mechanically isolated fibres of spruce (Picea abies [L.] Karst.). Part 3: Mechanical characterisation , 2005 .
[20] Stefanie E. Stanzl-Tschegg,et al. Fracture characteristics of different wood species under mode I loading perpendicular to the grain , 2002 .
[21] D. Grosser. Die Hölzer Mitteleuropas , 1977 .
[22] T. R. Wilson,et al. Strength and Related Properties of Woods Grown in the United States , 1935 .
[23] H. Carrington,et al. CV. The elastic constants of spruce , 1923 .
[24] J. C. F. Walker,et al. Stiffness of wood in fast-grown plantation softwoods: the influence of microfibril angle. , 1994 .
[25] A. C. Sekhar,et al. A Note on Mechanical Properties of Taxus baccata , 1959 .
[26] John Finn Siau,et al. Transport Processes in Wood , 1984, Springer Series in Wood Science.
[27] S. Stanzl-Tschegg,et al. New splitting method for wood fracture characterization , 2004, Wood Science and Technology.
[28] I. Smith,et al. Bridging crack model for fracture of spruce , 2002 .
[29] S. Stanzl-Tschegg,et al. Microtensile Testing of Wood Fibers Combined with Video Extensometry for Efficient Strain Detection , 2003 .
[30] E. E. Gdoutos,et al. Fracture of nano and engineering materials and structures : Proceedings of the 16th European Conference of Fracture, Alexandroupolis, Greece, July 3-7, 2006 , 2006 .
[31] Peter A. Thomas,et al. Taxus baccata L. , 2003 .
[32] P. Niemz,et al. Axial stiffness and selected structural properties of yew and spruce microtensile specimens , 2008 .
[33] Poonam,et al. Constituents of the yew trees , 1999 .
[34] E. Biblis. Effect of thickness of microtome sections on their tensile properties. , 2007 .
[35] Thomas Speck,et al. Biomimetics and technical textiles: solving engineering problems with the help of nature's wisdom. , 2006, American journal of botany.
[36] I. Burgert,et al. Evidence for the strength function of rays in living trees , 1999, Holz als Roh- und Werkstoff.
[37] D. Page,et al. Behaviour of Single Wood Fibres under Axial Tensile Strain , 1971, Nature.
[38] H. Militz,et al. The use of a microtensile strength bench for testing the strength of growth rings of softwoods and hardwoods parallel to the grain , 1994, Holz als Roh- und Werkstoff.
[39] Ingo Burgert,et al. Exploring the micromechanical design of plant cell walls. , 2006, American journal of botany.
[40] I. Burgert,et al. A Comparison of Two Techniques for Wood Fibre Isolation ‐ Evaluation by Tensile Tests on Single Fibres with Different Microfibril Angle , 2002 .
[41] Eric Landis,et al. Finite element techniques and models for wood fracture mechanics , 2005, Wood Science and Technology.
[42] A. Reiterer,et al. Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls , 1999 .
[43] Josef Krautkrämer,et al. Werkstoffprüfung mit Ultraschall , 1961 .
[44] G. Mertoglu-Elmas. Chemical components of heartwood and sapwood of common Yew (Taxus baccata L.). , 2003, Journal of environmental biology.
[45] P. K. Rastogi,et al. Micromechanics of wood subjected to axial tension , 1995, Wood Science and Technology.
[46] P. Dutilleul,et al. Growth rate effects on intra-ring and inter-ring trajectories of microfibril angle in Norway spruce (Picea abies) , 1999 .
[47] Elmar Krabbe. Messungen von Gleit- und Dehnungszahlen an Holzstäbchen mit rechteckigen Querschnitten , 1960 .
[48] William G. Davids,et al. Coupled experiments and simulations of microstructural damage in wood , 2002 .
[49] Robert Evans,et al. Rapid prediction of wood stiffness from microfibril angle and density , 2001 .
[50] Hanns-Christof Spatz,et al. Plant biomechanics: an overview and prospectus. , 2006, American journal of botany.
[51] M. S. Gilani. A micromechanical approach to the behaviour of single wood fibers and wood fracture at cellular level , 2006 .
[52] John E. Ebinger. Picea abies (L.) Karst. , 1967 .
[53] R. Schlüter. Elastische Messungen an Fichtenholz , 1932 .
[54] P. Niemz,et al. Vergleichende Untersuchungen zu ausgewählten mechanischen Eigenschaften von Eibe und Fichte | Comparative studies on selected mechanical properties of yew and spruce (reviewed paper) , 2005 .
[55] Jozef Keckes,et al. Cell-wall recovery after irreversible deformation of wood , 2003, Nature materials.
[56] P. Niemz,et al. Fracture characterisation of yew (Taxus baccata L.) and spruce (Picea abies [L.] Karst.) in the radial-tangential and tangential-radial crack propagation system by a micro wedge splitting test , 2007 .
[57] Daniel Keunecke,et al. STRUCTURAL AND MECHANICAL PROPERTIES OF YEW WOOD , 2007 .
[58] P. Saranpää,et al. Structural variation of tracheids in Norway spruce (Picea abies [L.] Karst.). , 2001, Journal of structural biology.
[59] F. Kollmann,et al. Technologie des Holzes und der Holzwerkstoffe , 1955 .
[60] M Stampanoni,et al. 3D imaging of microstructure of spruce wood. , 2007, Journal of structural biology.
[61] K. Bärner,et al. The Elastic Constants of MnAs , 1973, May 16.
[62] H. Sakai,et al. Effect of moisture content on ultrasonic velocity and attenuation in woods , 1990 .
[63] R. J. Astley,et al. Modelling the elastic properties of softwood , 2009, Holz als Roh- und Werkstoff.
[64] Brant C. White,et al. United States patent , 1985 .
[65] M. Y. Pillow,et al. Patterns of variation in fibril angles in loblolly pine , 1953 .
[66] Meng Gong,et al. Fracture and fatigue in wood , 2003 .
[67] Robert Evans,et al. Wood Stiffness by X‐Ray Diffractometry , 2008 .
[68] J. Woodhouse,et al. The influence of cell geometry on the elasticity of softwood , 1994 .
[69] R. Serimaa,et al. A study of the structure of wood cells by x-ray diffraction , 1984, Wood Science and Technology.
[70] D. Fengel,et al. Wood: Chemistry, Ultrastructure, Reactions , 1983 .
[71] R. Evans,et al. Microfibril angle variation by scanning X-ray diffractometry , 1999 .
[72] W. Voigt,et al. Lehrbuch der Kristallphysik , 1966 .
[73] Hanns-Christof Spatz,et al. Micromechanics of plant tissues beyond the linear-elastic range , 2002, Planta.
[74] E. Tschegg,et al. Damage and Fracture Mechanisms during Mode I and III Loading of Wood , 2001 .
[75] F. El-Hosseiny,et al. mechanical properties of single wood pulp fibres. VI. Fibril angle and the shape of the stress-strain curve , 1983 .
[76] G Jeronimidis,et al. Wood, one of nature's challenging composites. , 1980, Symposia of the Society for Experimental Biology.
[77] E. Tschegg,et al. Investigation of the nonlinear fracture behaviour of ordinary ceramic refractory materials , 1996 .
[78] K. Niklas,et al. The Influence of Rays on the Transverse Elastic Anisotropy in Green Wood of Deciduous Trees , 2001 .
[79] J. Brändström. MICRO- AND ULTRASTRUCTURAL ASPECTS OF NORWAY SPRUCE TRACHEIDS: A REVIEW , 2001 .
[80] P. Niemz,et al. Determination of Young’s and shear moduli of common yew and Norway spruce by means of ultrasonic waves , 2007, Wood Science and Technology.
[81] R. Wimmer,et al. EFFECTS OF HEARTWOOD EXTRACTIVES ON MECHANICAL PROPERTIES OF LARCH , 2005 .