Elasto-mechanical characterisation of yew and spruce wood with regard to structure-property relationships

For centuries, Common yew (Taxus baccata L.) has been well known for its extraordinary longitudinal elasticity and toughness. Its wood was used for certain weapons (e.g. longbows) requiring these material properties, particularly the low Young’s modulus and at the same time a high stretchability parallel to the grain. The few available literature references also indicate a high elasticity. Indisputably, there are further elastic softwood species, but none of them have a similarly high raw density as yew (620-720 kg/m3). Thus, yew holds an exceptional position, especially since there is usually a strong species-spanning positive interrelation between density and Young’s modulus. The reasons for this compliant response of yew despite its high density were as yet unknown.

[1]  Voichita Bucur,et al.  Acoustics of Wood , 1995 .

[2]  P. Niemz,et al.  Three-dimensional elastic behaviour of common yew and Norway spruce , 2008, Wood Science and Technology.

[3]  R. A. Cockrell A comparison of latewood pits, fibril orientation, and shrinkage of normal and compression wood of giant sequoia , 1974, Wood Science and Technology.

[4]  Paul Roschger,et al.  Position-Resolved Small-Angle X-ray Scattering of Complex Biological Materials , 1997 .

[5]  Alain Dufresne,et al.  Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. , 2005, Biomacromolecules.

[6]  R. Astley,et al.  Modelling the elastic properties of softwood , 2009, Holz als Roh- und Werkstoff.

[7]  Paul Gatenholm,et al.  Biomimetic engineering of cellulose-based materials. , 2007, Trends in biotechnology.

[8]  L. Salmén,et al.  Variations in Transverse Fibre Wall Properties: Relations Between Elastic Properties and Structure , 2000 .

[9]  L. Salmén,et al.  Cell wall properties and their effects on the mechanical properties of fibers , 2002 .

[10]  A. Wardrop,et al.  Some aspects of wood anatomy in relation to pulping quality and to tree breeding. , 1960 .

[11]  George Jeronimidis,et al.  Composites with high work of fracture , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[12]  Manjusri Misra,et al.  Surface modifications of natural fibers and performance of the resulting biocomposites: An overview , 2001 .

[13]  V. Bucur,et al.  Elastic constants for wood by an ultrasonic method , 1984, Wood Science and Technology.

[14]  P. Fratzl,et al.  Determination of spiral angles of elementary fibrils in the wood cell wall: comparison of small-angle X-ray scattering and wide-angle X-ray diffraction. , 1998 .

[15]  D. Kamdem,et al.  Influence of wood extractives on moisture sorption and wettability of red oak (Quercus rubra), black cherry (Prunus serotina), and red pine (Pinus resinosa) , 2007 .

[16]  Jozsef Bodig,et al.  Mechanics of Wood and Wood Composites , 1982 .

[17]  J. Sugiyama,et al.  Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment , 1990 .

[18]  S. Stanzl-Tschegg,et al.  Detection of the Fracture Path under Tensile Loads through in situ Tests in an ESEM Chamber , 2003 .

[19]  S. Stanzl-Tschegg,et al.  Properties of chemically and mechanically isolated fibres of spruce (Picea abies [L.] Karst.). Part 3: Mechanical characterisation , 2005 .

[20]  Stefanie E. Stanzl-Tschegg,et al.  Fracture characteristics of different wood species under mode I loading perpendicular to the grain , 2002 .

[21]  D. Grosser Die Hölzer Mitteleuropas , 1977 .

[22]  T. R. Wilson,et al.  Strength and Related Properties of Woods Grown in the United States , 1935 .

[23]  H. Carrington,et al.  CV. The elastic constants of spruce , 1923 .

[24]  J. C. F. Walker,et al.  Stiffness of wood in fast-grown plantation softwoods: the influence of microfibril angle. , 1994 .

[25]  A. C. Sekhar,et al.  A Note on Mechanical Properties of Taxus baccata , 1959 .

[26]  John Finn Siau,et al.  Transport Processes in Wood , 1984, Springer Series in Wood Science.

[27]  S. Stanzl-Tschegg,et al.  New splitting method for wood fracture characterization , 2004, Wood Science and Technology.

[28]  I. Smith,et al.  Bridging crack model for fracture of spruce , 2002 .

[29]  S. Stanzl-Tschegg,et al.  Microtensile Testing of Wood Fibers Combined with Video Extensometry for Efficient Strain Detection , 2003 .

[30]  E. E. Gdoutos,et al.  Fracture of nano and engineering materials and structures : Proceedings of the 16th European Conference of Fracture, Alexandroupolis, Greece, July 3-7, 2006 , 2006 .

[31]  Peter A. Thomas,et al.  Taxus baccata L. , 2003 .

[32]  P. Niemz,et al.  Axial stiffness and selected structural properties of yew and spruce microtensile specimens , 2008 .

[33]  Poonam,et al.  Constituents of the yew trees , 1999 .

[34]  E. Biblis Effect of thickness of microtome sections on their tensile properties. , 2007 .

[35]  Thomas Speck,et al.  Biomimetics and technical textiles: solving engineering problems with the help of nature's wisdom. , 2006, American journal of botany.

[36]  I. Burgert,et al.  Evidence for the strength function of rays in living trees , 1999, Holz als Roh- und Werkstoff.

[37]  D. Page,et al.  Behaviour of Single Wood Fibres under Axial Tensile Strain , 1971, Nature.

[38]  H. Militz,et al.  The use of a microtensile strength bench for testing the strength of growth rings of softwoods and hardwoods parallel to the grain , 1994, Holz als Roh- und Werkstoff.

[39]  Ingo Burgert,et al.  Exploring the micromechanical design of plant cell walls. , 2006, American journal of botany.

[40]  I. Burgert,et al.  A Comparison of Two Techniques for Wood Fibre Isolation ‐ Evaluation by Tensile Tests on Single Fibres with Different Microfibril Angle , 2002 .

[41]  Eric Landis,et al.  Finite element techniques and models for wood fracture mechanics , 2005, Wood Science and Technology.

[42]  A. Reiterer,et al.  Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls , 1999 .

[43]  Josef Krautkrämer,et al.  Werkstoffprüfung mit Ultraschall , 1961 .

[44]  G. Mertoglu-Elmas Chemical components of heartwood and sapwood of common Yew (Taxus baccata L.). , 2003, Journal of environmental biology.

[45]  P. K. Rastogi,et al.  Micromechanics of wood subjected to axial tension , 1995, Wood Science and Technology.

[46]  P. Dutilleul,et al.  Growth rate effects on intra-ring and inter-ring trajectories of microfibril angle in Norway spruce (Picea abies) , 1999 .

[47]  Elmar Krabbe Messungen von Gleit- und Dehnungszahlen an Holzstäbchen mit rechteckigen Querschnitten , 1960 .

[48]  William G. Davids,et al.  Coupled experiments and simulations of microstructural damage in wood , 2002 .

[49]  Robert Evans,et al.  Rapid prediction of wood stiffness from microfibril angle and density , 2001 .

[50]  Hanns-Christof Spatz,et al.  Plant biomechanics: an overview and prospectus. , 2006, American journal of botany.

[51]  M. S. Gilani A micromechanical approach to the behaviour of single wood fibers and wood fracture at cellular level , 2006 .

[52]  John E. Ebinger Picea abies (L.) Karst. , 1967 .

[53]  R. Schlüter Elastische Messungen an Fichtenholz , 1932 .

[54]  P. Niemz,et al.  Vergleichende Untersuchungen zu ausgewählten mechanischen Eigenschaften von Eibe und Fichte | Comparative studies on selected mechanical properties of yew and spruce (reviewed paper) , 2005 .

[55]  Jozef Keckes,et al.  Cell-wall recovery after irreversible deformation of wood , 2003, Nature materials.

[56]  P. Niemz,et al.  Fracture characterisation of yew (Taxus baccata L.) and spruce (Picea abies [L.] Karst.) in the radial-tangential and tangential-radial crack propagation system by a micro wedge splitting test , 2007 .

[57]  Daniel Keunecke,et al.  STRUCTURAL AND MECHANICAL PROPERTIES OF YEW WOOD , 2007 .

[58]  P. Saranpää,et al.  Structural variation of tracheids in Norway spruce (Picea abies [L.] Karst.). , 2001, Journal of structural biology.

[59]  F. Kollmann,et al.  Technologie des Holzes und der Holzwerkstoffe , 1955 .

[60]  M Stampanoni,et al.  3D imaging of microstructure of spruce wood. , 2007, Journal of structural biology.

[61]  K. Bärner,et al.  The Elastic Constants of MnAs , 1973, May 16.

[62]  H. Sakai,et al.  Effect of moisture content on ultrasonic velocity and attenuation in woods , 1990 .

[63]  R. J. Astley,et al.  Modelling the elastic properties of softwood , 2009, Holz als Roh- und Werkstoff.

[64]  Brant C. White,et al.  United States patent , 1985 .

[65]  M. Y. Pillow,et al.  Patterns of variation in fibril angles in loblolly pine , 1953 .

[66]  Meng Gong,et al.  Fracture and fatigue in wood , 2003 .

[67]  Robert Evans,et al.  Wood Stiffness by X‐Ray Diffractometry , 2008 .

[68]  J. Woodhouse,et al.  The influence of cell geometry on the elasticity of softwood , 1994 .

[69]  R. Serimaa,et al.  A study of the structure of wood cells by x-ray diffraction , 1984, Wood Science and Technology.

[70]  D. Fengel,et al.  Wood: Chemistry, Ultrastructure, Reactions , 1983 .

[71]  R. Evans,et al.  Microfibril angle variation by scanning X-ray diffractometry , 1999 .

[72]  W. Voigt,et al.  Lehrbuch der Kristallphysik , 1966 .

[73]  Hanns-Christof Spatz,et al.  Micromechanics of plant tissues beyond the linear-elastic range , 2002, Planta.

[74]  E. Tschegg,et al.  Damage and Fracture Mechanisms during Mode I and III Loading of Wood , 2001 .

[75]  F. El-Hosseiny,et al.  mechanical properties of single wood pulp fibres. VI. Fibril angle and the shape of the stress-strain curve , 1983 .

[76]  G Jeronimidis,et al.  Wood, one of nature's challenging composites. , 1980, Symposia of the Society for Experimental Biology.

[77]  E. Tschegg,et al.  Investigation of the nonlinear fracture behaviour of ordinary ceramic refractory materials , 1996 .

[78]  K. Niklas,et al.  The Influence of Rays on the Transverse Elastic Anisotropy in Green Wood of Deciduous Trees , 2001 .

[79]  J. Brändström MICRO- AND ULTRASTRUCTURAL ASPECTS OF NORWAY SPRUCE TRACHEIDS: A REVIEW , 2001 .

[80]  P. Niemz,et al.  Determination of Young’s and shear moduli of common yew and Norway spruce by means of ultrasonic waves , 2007, Wood Science and Technology.

[81]  R. Wimmer,et al.  EFFECTS OF HEARTWOOD EXTRACTIVES ON MECHANICAL PROPERTIES OF LARCH , 2005 .