Touching Triangle Representations for 3-Connected Planar Graphs

A touching triangle graph (TTG) representation of a planar graph is a planar drawing Γ of the graph, where each vertex is represented as a triangle and each edge e is represented as a side contact of the triangles that correspond to the end vertices of e. We call Γ a proper TTG representation if Γ determines a tiling of a triangle, where each tile corresponds to a distinct vertex of the input graph. In this paper we prove that every 3-connected cubic planar graph admits a proper TTG representation. We also construct proper TTG representations for parabolic grid graphs and the graphs determined by rectangular grid drawings (e.g., square grid graphs). Finally, we describe a fixed-parameter tractable decision algorithm for testing whether a 3-connected planar graph admits a proper TTG representation.

[1]  Md. Saidur Rahman,et al.  Rectangular Drawings of Planar Graphs , 2002, Graph Drawing.

[2]  Michael Jünger,et al.  Combinatorial optimization - Eureka, you shrink! , 2003 .

[3]  Suresh Venkatasubramanian,et al.  Rectangular layouts and contact graphs , 2006, TALG.

[4]  Gerhard J. Woeginger,et al.  Exact Algorithms for NP-Hard Problems: A Survey , 2001, Combinatorial Optimization.

[5]  Carsten Thomassen,et al.  Interval representations of planar graphs , 1986, J. Comb. Theory, Ser. B.

[6]  Stefan Felsner,et al.  Convex Drawings of 3-Connected Plane Graphs , 2005, SODA '05.

[7]  Michael Kaufmann,et al.  Optimal Polygonal Representation of Planar Graphs , 2010, LATIN.

[9]  Patrice Ossona de Mendez,et al.  On Triangle Contact Graphs , 1994, Combinatorics, Probability and Computing.

[10]  Patrice Ossona de Mendez,et al.  Barycentric systems and stretchability , 2007, Discret. Appl. Math..

[11]  Xin He,et al.  On Finding the Rectangular Duals of Planar Triangular Graphs , 1993, SIAM J. Comput..

[12]  János Pach,et al.  How to draw a planar graph on a grid , 1990, Comb..

[13]  J. Joseph Fowler,et al.  Strongly-Connected Outerplanar Graphs with Proper Touching Triangle Representations , 2013, GD.

[14]  Hsueh-I Lu,et al.  Compact floor-planning via orderly spanning trees , 2003, J. Algorithms.

[15]  Yifan Hu,et al.  On Touching Triangle Graphs , 2010, GD.

[16]  Vladimir Batagelj,et al.  INDUCTIVE CLASSES OF CUBIC GRAPHS , 1984 .

[17]  Xin He,et al.  On Floor-Plan of Plane Graphs , 1999, SIAM J. Comput..