A 345 µW Multi-Sensor Biomedical SoC With Bio-Impedance, 3-Channel ECG, Motion Artifact Reduction, and Integrated DSP

This paper presents a MUlti-SEnsor biomedical IC (MUSEIC). It features a high-performance, low-power analog front-end (AFE) and fully integrated DSP. The AFE has three biopotential readouts, one bio-impedance readout, and support for general-purpose analog sensors The biopotential readout channels can handle large differential electrode offsets ( ±400 mV), achieve high input impedance ( >500 M Ω), low noise ( 620 nVrms in 150 Hz), and large CMRR ( >110 dB) without relying on trimming while consuming only 31 μW/channel. In addition, fully integrated real-time motion artifact reduction, based on simultaneous electrode-tissue impedance measurement, with feedback to the analog domain is supported. The bio-impedance readout with pseudo-sine current generator achieves a resolution of 9.8 m Ω/ √Hz while consuming just 58 μW/channel. The DSP has a general purpose ARM Cortex M0 processor and an HW accelerator optimized for energy-efficient execution of various biomedical signal processing algorithms achieving 10 × or more energy savings in vector multiply-accumulate executions.

[1]  Refet Firat Yazicioglu,et al.  A 200μW Eight-Channel Acquisition ASIC for Ambulatory EEG Systems , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[2]  Bill Yang Liu,et al.  9μW 88dB DR fully-clocked switched-opamp ΔΣ modulator with novel efficient resonator , 2010 .

[3]  Refet Firat Yazicioglu,et al.  A 30 $\mu$ W Analog Signal Processor ASIC for Portable Biopotential Signal Monitoring , 2011, IEEE Journal of Solid-State Circuits.

[4]  Refet Firat Yazicioglu,et al.  18.3 A multi-parameter signal-acquisition SoC for connected personal health applications , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[5]  Rocío del Río,et al.  A 100kHz–10MHz BW, 78-to-52dB DR, 4.6-to-11mW flexible SC ΣΔ modulator in 1.2-V 90-nm CMOS , 2010, 2010 Proceedings of ESSCIRC.

[6]  Refet Firat Yazicioglu,et al.  1.4V 13μW 83dB DR CT-ΣΔ modulator with Dual-Slope quantizer and PWM DAC for biopotential signal acquisition , 2011, 2011 Proceedings of the ESSCIRC (ESSCIRC).

[7]  B. A. Wooley,et al.  A 1.8-V digital-audio sigma-delta modulator in 0.8-/spl mu/m CMOS , 1997 .

[8]  SeongHwan Cho,et al.  An integrated pulse wave velocity sensor using Bio-impedance and noise-shaped body channel communication , 2013, 2013 Symposium on VLSI Circuits.

[9]  Mart Min,et al.  Improvement of Lock-in Electrical Bio-Impedance Analyzer for Implantable Medical Devices , 2007, IEEE Transactions on Instrumentation and Measurement.

[10]  Refet Firat Yazicioglu,et al.  A 200 $\mu$ W Eight-Channel EEG Acquisition ASIC for Ambulatory EEG Systems , 2008, IEEE Journal of Solid-State Circuits.

[11]  Sverre Grimnes,et al.  Bioimpedance and Bioelectricity Basics , 2000 .

[12]  Refet Firat Yazicioglu,et al.  A 160 $\mu{\rm A}$ Biopotential Acquisition IC With Fully Integrated IA and Motion Artifact Suppression , 2012, IEEE Transactions on Biomedical Circuits and Systems.

[13]  Refet Firat Yazicioglu,et al.  A 1-V 99-to-75dB SNDR, 256Hz–16kHz bandwidth, 8.6-to-39µW reconfigurable SC ΔΣ Modulator for autonomous biomedical applications , 2013, 2013 Proceedings of the ESSCIRC (ESSCIRC).

[14]  Timothy Denison,et al.  A 2.2/spl mu/W 94nV//spl radic/Hz, Chopper-Stabilized Instrumentation Amplifier for EEG Detection in Chronic Implants , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[15]  Yong Lian,et al.  A 1V 22µW 32-channel implantable EEG recording IC , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[16]  John G. Webster,et al.  Medical Instrumentation: Application and Design , 1997 .

[17]  D. McDonagh,et al.  VITAL SIGN MONITORING IN WIRELESS BODY SENSOR NETWORKS , 2008 .

[18]  B. Wooley,et al.  A 1.8-V digital-audio sigma-delta modulator in 0.8-μm CMOS , 1997, IEEE J. Solid State Circuits.

[19]  Naveen Verma,et al.  A Low-Power Processor With Configurable Embedded Machine-Learning Accelerators for High-Order and Adaptive Analysis of Medical-Sensor Signals , 2013, IEEE Journal of Solid-State Circuits.

[20]  Fan Zhang,et al.  A 500µW neural tag with 2µVrms AFE and frequency-multiplying MICS/ISM FSK transmitter , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[21]  Xiaobo Wu,et al.  Power optimization of high performance ΔΣ modulators for portable measurement applications , 2010, 2010 IEEE Asian Solid-State Circuits Conference.

[22]  Refet Firat Yazicioglu,et al.  A 30µW Analog Signal Processor ASIC for biomedical signal monitoring , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[23]  I. Romero,et al.  Adaptive filtering in ECG denoising: A comparative study , 2012, 2012 Computing in Cardiology.

[24]  W. Guggenbuhl,et al.  A versatile building block: the CMOS differential difference amplifier , 1987 .

[25]  G. Temes,et al.  Wideband low-distortion delta-sigma ADC topology , 2001 .

[26]  Alison J. Burdett,et al.  A 1V, Micropower System-on-Chip for Vital-Sign Monitoring in Wireless Body Sensor Networks , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[27]  Jordi Parramon,et al.  A Micropower Low-Noise Neural Recording Front-End Circuit for Epileptic Seizure Detection , 2011, IEEE Journal of Solid-State Circuits.

[28]  Kofi A. A. Makinwa,et al.  A 1.8 $\mu$ W 60 nV$/\surd$ Hz Capacitively-Coupled Chopper Instrumentation Amplifier in 65 nm CMOS for Wireless Sensor Nodes , 2011, IEEE Journal of Solid-State Circuits.

[29]  Refet Firat Yazicioglu,et al.  A 13 $\mu {\rm A}$ Analog Signal Processing IC for Accurate Recognition of Multiple Intra-Cardiac Signals , 2013, IEEE Transactions on Biomedical Circuits and Systems.