Discriminability measures and time–frequency features: An application to vibrissal tactile discrimination

[1]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[2]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[3]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[4]  M. Ito Processing of vibrissa sensory information within the rat neocortex. , 1985, Journal of neurophysiology.

[5]  H. Riedwyl,et al.  Standard Distance in Univariate and Multivariate Analysis , 1986 .

[6]  J. Rice Mathematical Statistics and Data Analysis , 1988 .

[7]  E. Guic-Robles,et al.  Rats can learn a roughness discrimination using only their vibrissal system , 1989, Behavioural Brain Research.

[8]  D. Simons,et al.  Biometric analyses of vibrissal tactile discrimination in the rat , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[10]  D. Simons,et al.  Task- and subject-related differences in sensorimotor behavior during active touch. , 1995, Somatosensory & motor research.

[11]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[12]  Stefano Panzeri,et al.  Analytical estimates of limited sampling biases in different information measures. , 1996, Network.

[13]  Stefano Panzeri,et al.  How Well Can We Estimate the Information Carried in Neuronal Responses from Limited Samples? , 1997, Neural Computation.

[14]  A. Borst,et al.  Encoding of Visual Motion Information and Reliability in Spiking and Graded Potential Neurons , 1997, The Journal of Neuroscience.

[15]  Alexander Borst,et al.  Information theory and neural coding , 1999, Nature Neuroscience.

[16]  P. Mitra,et al.  Analysis of dynamic brain imaging data. , 1998, Biophysical journal.

[17]  Jonathan D. Victor,et al.  Asymptotic Bias in Information Estimates and the Exponential (Bell) Polynomials , 2000, Neural Computation.

[18]  D. Simons,et al.  Coding of deflection velocity and amplitude by whisker primary afferent neurons: implications for higher level processing. , 2000, Somatosensory & motor research.

[19]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[20]  Christian K. Machens,et al.  Representation of Acoustic Communication Signals by Insect Auditory Receptor Neurons , 2001, The Journal of Neuroscience.

[21]  S. Qian Introduction to Time-Frequency and Wavelet Transforms , 2001 .

[22]  Liam Paninski,et al.  Convergence properties of three spike-triggered analysis techniques , 2003, NIPS.

[23]  Martin Egelhaaf,et al.  Impact of Photon Noise on the Reliability of a Motion-Sensitive Neuron in the Fly's Visual System , 2003, The Journal of Neuroscience.

[24]  Martin Egelhaaf,et al.  Neural Coding with Graded Membrane Potential Changes and Spikes , 2001, Journal of Computational Neuroscience.

[25]  Barry J. Richmond,et al.  Unbiased measures of transmitted information and channel capacity from multivariate neuronal data , 1991, Biological Cybernetics.

[26]  P. Sterling,et al.  Efficiency of Information Transmission by Retinal Ganglion Cells , 2004, Current Biology.

[27]  Christopher L Passaglia,et al.  Information transmission rates of cat retinal ganglion cells. , 2004, Journal of neurophysiology.

[28]  C. Felice,et al.  Texture discrimination and multi-unit recording in the rat vibrissal nerve , 2006, BMC Neuroscience.

[29]  M. Diamond,et al.  Neuronal Encoding of Texture in the Whisker Sensory Pathway , 2005, PLoS biology.

[30]  E. Chichilnisky,et al.  Detection Sensitivity and Temporal Resolution of Visual Signals near Absolute Threshold in the Salamander Retina , 2022 .

[31]  Jianfeng Feng,et al.  Detecting time-dependent coherence between non-stationary electrophysiological signals—A combined statistical and time–frequency approach , 2006, Journal of Neuroscience Methods.

[32]  M. Diamond,et al.  Deciphering the Spike Train of a Sensory Neuron: Counts and Temporal Patterns in the Rat Whisker Pathway , 2006, The Journal of Neuroscience.

[33]  Jonathan D Victor,et al.  Approaches to Information-Theoretic Analysis of Neural Activity , 2006, Biological theory.

[34]  M. Egelhaaf,et al.  Information and Discriminability as Measures of Reliability of Sensory Coding , 2007, PloS one.

[35]  Daniel N. Hill,et al.  Texture Coding in the Rat Whisker System: Slip-Stick Versus Differential Resonance , 2008, PLoS biology.

[36]  M. Diamond,et al.  Whisker-Mediated Texture Discrimination , 2008, PLoS biology.

[37]  C. Felice,et al.  Design and construction of a photoresistive sensor for monitoring the rat vibrissal displacement , 2009, Journal of Neuroscience Methods.

[38]  Nikos K Logothetis,et al.  A toolbox for the fast information analysis of multiple-site LFP, EEG and spike train recordings , 2009, BMC Neuroscience.

[39]  C. Felice,et al.  Electrophysiological characterization of texture information slip-resistance dependent in the rat vibrissal nerve , 2011, BMC Neuroscience.

[40]  Ana L. Albarracín,et al.  Neural encoding schemes of tactile information in afferent activity of the vibrissal system , 2012, Journal of Computational Neuroscience.