Local Spectral Expansion Approach to High Dimensional Expanders Part I: Descent of Spectral Gaps

We introduce the notion of local spectral expansion of a simplicial complex as a possible analogue of spectral expansion defined for graphs. We then show that the condition of local spectral expansion for a complex yields various spectral gaps in both the links of the complex and the global Laplacians of the complex.

[1]  Alexander Lubotzky,et al.  Expander graphs in pure and applied mathematics , 2011, 1105.2389.

[2]  Howard Garland,et al.  p-Adic Curvature and the Cohomology of Discrete Subgroups of p-Adic Groups , 1973 .

[3]  W. Ballmann,et al.  On L2-cohomology and Property (T) for Automorphism Groups of Polyhedral Cell Complexes , 1997 .

[4]  A. Borel,et al.  Cohomologie de certains groupes discretes et lapiacien p-adique [d'après H. Garland] , 1975 .

[5]  J. Jost,et al.  Spectra of combinatorial Laplace operators on simplicial complexes , 2011, 1105.2712.

[6]  Alexander Lubotzky,et al.  Ramanujan complexes and high dimensional expanders , 2012, 1301.1028.

[7]  Izhar Oppenheim,et al.  Vanishing of cohomology and property (T) for groups acting on weighted simplicial complexes , 2011, 1110.5724.

[8]  Roy Meshulam,et al.  Expansion of Building-Like Complexes , 2014 .

[9]  M. Gromov Singularities, Expanders and Topology of Maps. Part 2: from Combinatorics to Topology Via Algebraic Isoperimetry , 2010 .

[10]  Anna Gundert,et al.  Higher dimensional discrete Cheeger inequalities , 2014, J. Comput. Geom..

[11]  N. Wallach,et al.  Homological connectivity of random k-dimensional complexes , 2009 .

[12]  Anna Gundert,et al.  On laplacians of random complexes , 2012, SoCG '12.

[13]  Matthew Kahle,et al.  Spectral Gaps of Random Graphs and Applications , 2012, International Mathematics Research Notices.

[14]  Alexander Lubotzky,et al.  Mixing Properties and the Chromatic Number of Ramanujan Complexes , 2014, 1407.7700.

[15]  F. Chung Laplacians of graphs and Cheeger inequalities , 1993 .

[16]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[17]  Izhar Oppenheim,et al.  Local Spectral Expansion Approach to High Dimensional Expanders Part II: Mixing and Geometrical Overlapping , 2014, Discret. Comput. Geom..

[18]  R. Meshulam,et al.  Homological connectivity of random k-dimensional complexes , 2009, Random Struct. Algorithms.

[19]  János Pach,et al.  Overlap properties of geometric expanders , 2011, SODA '11.

[20]  Nathan Linial,et al.  Homological Connectivity Of Random 2-Complexes , 2006, Comb..

[21]  Tali Kaufman,et al.  High Order Random Walks: Beyond Spectral Gap , 2017, APPROX-RANDOM.

[22]  János Pach A Tverberg-type result on multicolored simplices , 1998, Comput. Geom..

[23]  R. Tennant Algebra , 1941, Nature.

[24]  Ori Parzanchevski Mixing in High-Dimensional Expanders , 2017, Comb. Probab. Comput..

[25]  Ori Parzanchevski,et al.  Isoperimetric inequalities in simplicial complexes , 2012, Comb..