Hierarchies of Generalized Kolmogorov Complexities and Nonenumerable Universal Measures Computable in the Limit
暂无分享,去创建一个
[1] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .
[2] A. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .
[3] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.
[4] David A. Huffman,et al. A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.
[5] D. Huffman. A Method for the Construction of Minimum-Redundancy Codes , 1952 .
[6] A. Mostowski. On computable sequences , 1957 .
[7] A. Grzegorczyk. On the definitions of computable real continuous functions , 1957 .
[8] Ray J. Solomonoff,et al. A Formal Theory of Inductive Inference. Part I , 1964, Inf. Control..
[9] E. Mark Gold,et al. Limiting recursion , 1965, Journal of Symbolic Logic.
[10] Hilary Putnam,et al. Trial and error predicates and the solution to a problem of Mostowski , 1965, Journal of Symbolic Logic.
[11] Per Martin-Löf,et al. The Definition of Random Sequences , 1966, Inf. Control..
[12] A. Kolmogorov. Three approaches to the quantitative definition of information , 1968 .
[13] Gregory J. Chaitin,et al. On the Length of Programs for Computing Finite Binary Sequences: statistical considerations , 1969, JACM.
[14] L. Levin,et al. THE COMPLEXITY OF FINITE OBJECTS AND THE DEVELOPMENT OF THE CONCEPTS OF INFORMATION AND RANDOMNESS BY MEANS OF THE THEORY OF ALGORITHMS , 1970 .
[15] Claus-Peter Schnorr,et al. Process complexity and effective random tests , 1973 .
[16] Ray J. Solomonoff,et al. Complexity-based induction systems: Comparisons and convergence theorems , 1978, IEEE Trans. Inf. Theory.
[17] Péter Gács. On the relation between descriptional complexity and algorithmic probability , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).
[18] Stuart A. Kurtz. On the Random Oracle Hypothesis , 1983, Inf. Control..
[19] H. Cantor. Ueber eine Eigenschaft des Inbegriffs aller reellen algebraischen Zahlen. , 1984 .
[20] M. Beeson. Foundations of Constructive Mathematics , 1985 .
[21] Gregory. J. Chaitin,et al. Algorithmic information theory , 1987, Cambridge tracts in theoretical computer science.
[22] David Haussler,et al. Occam's Razor , 1987, Inf. Process. Lett..
[23] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[24] Antonín Kučera,et al. On Relative Randomness , 1993, Ann. Pure Appl. Log..
[25] Günter Hotz,et al. Analytic Machines , 1999, Theor. Comput. Sci..
[26] C. H. Bennett,et al. Quantum Information and Computation , 1995 .
[27] J. Urgen Schmidhuber. A Computer Scientist's View of Life, the Universe, and Everything , 1997 .
[28] Vladimir V. V'yugin,et al. Non-Stochastic Infinite and Finite Sequences , 1998, Theor. Comput. Sci..
[29] Robert M. Solovay. A Version of Ω for which ZFC Cannot Predict a Single Bit , 2000, Finite Versus Infinite.
[30] Jürgen Schmidhuber,et al. Algorithmic Theories of Everything , 2000, ArXiv.
[31] Marcus Hutter. New Error Bounds for Solomonoff Prediction , 2001, J. Comput. Syst. Sci..
[32] Marcus Hutter. General Loss Bounds for Universal Sequence Prediction , 2001, ICML.
[33] Antonín Kucera,et al. Randomness and Recursive Enumerability , 2001, SIAM J. Comput..
[34] Cristian S. Calude,et al. Recursively enumerable reals and Chaitin Ω numbers , 2001, Theoretical Computer Science.
[35] Cristian S. Calude. Chaitin Omega numbers, Solovay machines, and Gödel incompleteness , 2002, Theor. Comput. Sci..