Lie-Trotter product formulas for nonlinear filtering

The nonlinear filtering problem for a diffusion process whose drift and diffusion coefficients depend parametrically on a finite-state jump process involves the solution of a vector system of linear, stochastic partial differential equations. A Lie-Trotter product formula is proven to hold for this system and a recursive implementation is discussed.

[1]  Kenneth A. Loparo,et al.  Nonlinear filtering for systems with random structure , 1986 .

[2]  A. Shiryayev,et al.  Statistics of Random Processes I: General Theory , 1984 .

[3]  V. Benes,et al.  Estimation and control for linear, partially observable systems with non-gaussian initial distribution☆☆☆ , 1983 .

[4]  E. Görlich,et al.  Ar approximation theorem for semigroups of growth order α and an extension of the Trotter-Lie formula , 1983 .

[5]  Mark H. A. Davis A Pathwise Solution of the Equations of Nonlinear Filtering , 1982 .

[6]  J. Baras,et al.  Accurate Evaluation of Stochastic Wiener Integrals with Applications to Scattering in Random Media and to Nonlinear Filtering , 1981 .

[7]  P. Besala Fundamental solution and Cauchy problem for a parabolic system with unbounded coefficients , 1979 .

[8]  J. Dollard,et al.  On strong product integration , 1978 .

[9]  Alan S. Willsky,et al.  Algebraic Structure and Finite Dimensional Nonlinear Estimation , 1978 .

[10]  S. Steinberg Applications of the lie algebraic formulas of Baker, Campbell, Hausdorff, and Zassenhaus to the calculation of explicit solutions of partial differential equations , 1977 .

[11]  F. Levieux Conception d'algorithmes parallèlisables et convergents de filtrage récursif non-linéaire , 1977 .

[12]  Harold J. Kushner,et al.  Finite difference methods for the weak solutions of the Kolmogorov equations for the density of both diffusion and conditional diffusion processes , 1976 .

[13]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[14]  H. Trotter On the product of semi-groups of operators , 1959 .

[15]  José M. F. Moura,et al.  Phase Demodulation: A Nonlinear Filtering Approach , 1983 .

[16]  T. Björk Finite dimensional optimal filters for a class of ltô- processes with jumping parameters , 1980 .

[17]  B. Simon Functional integration and quantum physics , 1979 .

[18]  V. Varadarajan Lie groups, Lie algebras, and their representations , 1974 .

[19]  W. Wonham Some applications of stochastic difierential equations to optimal nonlinear ltering , 1964 .