A dynamic continental moisture gradient drove Amazonian bird diversification

Diversification of Amazon birds led by climate stability: lineages originated in the wetter west and dispersed into the drier east. The Amazon is the primary source of Neotropical diversity and a nexus for discussions on processes that drive biotic diversification. Biogeographers have focused on the roles of rivers and Pleistocene climate change in explaining high rates of speciation. We combine phylogeographic and niche-based paleodistributional projections for 23 upland terra firme forest bird lineages from across the Amazon to derive a new model of regional biological diversification. We found that climate-driven refugial dynamics interact with dynamic riverine barriers to produce a dominant pattern: Older lineages in the wetter western and northern parts of the Amazon gave rise to lineages in the drier southern and eastern parts. This climate/drainage basin evolution interaction links landscape dynamics with biotic diversification and explains the east-west diversity gradients across the Amazon.

[1]  R. Irizarry ggplot2 , 2019, Introduction to Data Science.

[2]  R. T. Brumfield,et al.  The dual role of Amazonian rivers in the generation and maintenance of avian diversity , 2018, Science Advances.

[3]  J. Cracraft,et al.  Biogeography and diversification of Rhegmatorhina (Aves: Thamnophilidae): Implications for the evolution of Amazonian landscapes during the Quaternary , 2018 .

[4]  C. Nobre,et al.  Amazon Tipping Point , 2018, Science Advances.

[5]  M. Shawkey,et al.  Hybrid speciation leads to novel male secondary sexual ornamentation of an Amazonian bird , 2017, Proceedings of the National Academy of Sciences.

[6]  M. Schulz,et al.  Response of the Amazon rainforest to late Pleistocene climate variability , 2017 .

[7]  A. Aleixo,et al.  Phylogeography and diversification of an Amazonian understorey hummingbird: paraphyly and evidence for widespread cryptic speciation in the Plio‐Pleistocene , 2017 .

[8]  J. Damsté,et al.  A 30 Ma history of the Amazon River inferred from terrigenous sediments and organic matter on the Ceará Rise , 2017 .

[9]  Adalberto J. Santos,et al.  Biogeography of Amazon birds: rivers limit species composition, but not areas of endemism , 2017, Scientific Reports.

[10]  A. Peterson,et al.  Do consensus models outperform individual models? Transferability evaluations of diverse modeling approaches for an invasive moth , 2017, Biological Invasions.

[11]  C. C. Ribas,et al.  Biogeography of the Neotropical genus Malacoptila (Aves: Bucconidae): the influence of the Andean orogeny, Amazonian drainage evolution and palaeoclimate , 2017 .

[12]  R. Edwards,et al.  Hydroclimate changes across the Amazon lowlands over the past 45,000 years , 2017, Nature.

[13]  Bryan C. Carstens,et al.  Recurrent connections between Amazon and Atlantic forests shaped diversity in Caatinga four‐eyed frogs , 2016 .

[14]  S. Jansa,et al.  Spatiotemporal diversification of a low‐vagility Neotropical vertebrate clade (short‐tailed opossums, Didelphidae: Monodelphis) , 2016 .

[15]  A. Aleixo,et al.  Hybridization in headwater regions, and the role of rivers as drivers of speciation in Amazonian birds , 2015, Evolution; international journal of organic evolution.

[16]  M. Vallinoto,et al.  Molecular phylogeny and diversification of a widespread Neotropical rainforest bird group: The Buff-throated Woodcreeper complex, Xiphorhynchus guttatus/susurrans (Aves: Dendrocolaptidae). , 2015, Molecular phylogenetics and evolution.

[17]  D. Rossetti,et al.  Late quaternary dynamics in the Madeira River basin, southern Amazonia (Brazil), as revealed by paleomorphological analysis. , 2015, Anais da Academia Brasileira de Ciencias.

[18]  N. Matzke,et al.  Model selection in historical biogeography reveals that founder-event speciation is a crucial process in Island Clades. , 2014, Systematic biology.

[19]  Curtis W. Burney,et al.  The drivers of tropical speciation , 2014 .

[20]  M. Wink,et al.  Multiple speciation across the Andes and throughout Amazonia: the case of the spot‐backed antbird species complex (Hylophylax naevius/Hylophylax naevioides) , 2014 .

[21]  E. Dantas,et al.  Provenance of Pliocene and recent sedimentary deposits in western Amazônia, Brazil: Consequences for the paleodrainage of the Solimões-Amazonas River , 2013 .

[22]  F. Sequeira,et al.  Cryptic patterns of diversification of a widespread Amazonian woodcreeper species complex (Aves: Dendrocolaptidae) inferred from multilocus phylogenetic analysis: implications for historical biogeography and taxonomy. , 2013, Molecular phylogenetics and evolution.

[23]  R. Leite,et al.  Revisiting Amazonian phylogeography: insights into diversification hypotheses and novel perspectives , 2013, Organisms Diversity & Evolution.

[24]  Thiago F. Rangel,et al.  Drawbacks to palaeodistribution modelling: the case of South American seasonally dry forests , 2013 .

[25]  R. Edwards,et al.  Climate change patterns in Amazonia and biodiversity , 2013, Nature Communications.

[26]  Fernando M. d'Horta,et al.  Phylogeny and comparative phylogeography of Sclerurus (Aves: Furnariidae) reveal constant and cryptic diversification in an old radiation of rain forest understorey specialists , 2013 .

[27]  R. Lanfear,et al.  Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. , 2012, Molecular biology and evolution.

[28]  S. Borges,et al.  A New Area of Endemism for Amazonian Birds in the Rio Negro Basin , 2012 .

[29]  M. Suchard,et al.  Bayesian Phylogenetics with BEAUti and the BEAST 1.7 , 2012, Molecular biology and evolution.

[30]  J. Cracraft,et al.  A palaeobiogeographic model for biotic diversification within Amazonia over the past three million years , 2012, Proceedings of the Royal Society B: Biological Sciences.

[31]  A. Peterson,et al.  The crucial role of the accessible area in ecological niche modeling and species distribution modeling , 2011 .

[32]  T. Stadler,et al.  Amazonia Through Time: Andean Uplift, Climate Change, Landscape Evolution, and Biodiversity , 2010, Science.

[33]  Pedro M. Valero-Mora,et al.  ggplot2: Elegant Graphics for Data Analysis , 2010 .

[34]  N. Espurt,et al.  The Nazca Ridge and uplift of the Fitzcarrald Arch : implications for regional geology in northern South America , 2010 .

[35]  A. Peterson,et al.  ENVIRONMENTAL CORRELATION STRUCTURE AND ECOLOGICAL NICHE MODEL PROJECTIONS , 2009 .

[36]  A. Aleixo,et al.  Molecular Systematics and Plumage Evolution in the Monotypic Obligate Army-Ant-Following Genus Skutchia (Thamnophilidae) , 2009 .

[37]  A. Drummond,et al.  Bayesian inference of population size history from multiple loci , 2008, BMC Evolutionary Biology.

[38]  I. Lovette,et al.  Explosive Evolutionary Radiations: Decreasing Speciation or Increasing Extinction Through Time? , 2008, Evolution; international journal of organic evolution.

[39]  D. Schluter,et al.  Calibrating the avian molecular clock , 2008, Molecular ecology.

[40]  A. Townsend Peterson,et al.  Rethinking receiver operating characteristic analysis applications in ecological niche modeling , 2008 .

[41]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[42]  Fernando Pellon de Miranda,et al.  Mega capture of the Rio Negro and formation of the Anavilhanas Archipelago, Central Amazônia, Brazil: Evidences in an SRTM digital elevation model , 2007 .

[43]  A. Peterson,et al.  ECOLOGICAL NICHE CONSERVATISM AND PLEISTOCENE REFUGIA IN THE THRUSH-LIKE MOURNER, SCHIFFORNIS SP., IN THE NEOTROPICS , 2007, Evolution; international journal of organic evolution.

[44]  A. Townsend Peterson,et al.  Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent , 2007 .

[45]  R. Pearson,et al.  Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar , 2006 .

[46]  A. Peterson,et al.  Pleistocene fragmentation of Amazon species’ ranges , 2006 .

[47]  Robert P. Anderson,et al.  Maximum entropy modeling of species geographic distributions , 2006 .

[48]  Daniel L Rabosky,et al.  LASER: A Maximum Likelihood Toolkit for Detecting Temporal Shifts in Diversification Rates From Molecular Phylogenies , 2006, Evolutionary bioinformatics online.

[49]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .

[50]  G. Danabasoglu,et al.  The Community Climate System Model Version 4 , 2011 .

[51]  Korbinian Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[52]  G. Powell,et al.  Terrestrial Ecoregions of the World: A New Map of Life on Earth , 2001 .

[53]  C. Peres,et al.  Riverine barriers and the geographic distribution of Amazonian species. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[54]  J. Jouzel,et al.  Evidence for general instability of past climate from a 250-kyr ice-core record , 1993, Nature.

[55]  T. Clutton‐Brock,et al.  River Boundaries and Species Range Size in Amazonian Primates , 1992, The American Naturalist.

[56]  J. Haffer Speciation in amazonian forest birds. , 1969, Science.

[57]  J. Bates,et al.  Molecular systematics of the new world screech-owls (Megascops: Aves, Strigidae): biogeographic and taxonomic implications. , 2016, Molecular phylogenetics and evolution.

[58]  A. Aleixo,et al.  Cryptic speciation in the white-shouldered antshrike (Thamnophilus aethiops, Aves - Thamnophilidae): the tale of a transcontinental radiation across rivers in lowland Amazonia and the northeastern Atlantic Forest. , 2015, Molecular phylogenetics and evolution.

[59]  M. Wink,et al.  Multilocus phylogeography of the Wedge-billed Woodcreeper Glyphorynchus spirurus (Aves, Furnariidae) in lowland Amazonia: widespread cryptic diversity and paraphyly reveal a complex diversification pattern. , 2013, Molecular phylogenetics and evolution.

[60]  N. Matzke Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing , 2013 .

[61]  J. Copete Handbook of the birds of the world , 2012 .

[62]  M. Benton Investigating evolutionary radiations , 2010 .

[63]  F. Vimeux,et al.  Past Climate Variability in South America and Surrounding Regions: From the Last Glacial Maximum to the Holocene , 2009 .

[64]  M. Power,et al.  Vegetation and Fire at the Last Glacial Maximum in Tropical South America , 2009 .

[65]  Luke J. Harmon,et al.  GEIGER: investigating evolutionary radiations , 2008, Bioinform..

[66]  L. Prestes,et al.  INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA , 2006 .

[67]  Hiroyasu Hasumi,et al.  K-1 Coupled GCM (MIROC) Description , 2004 .

[68]  M. Bush Amazonian speciation: a necessarily complex model , 1994 .