Enhancing image resolution of confocal fluorescence microscopy with deep learning

[1]  E. Lam,et al.  Correction: Enhancing image resolution of confocal fluorescence microscopy with deep learning , 2023 .

[2]  Stan Z. Li,et al.  Intelligent designs in nanophotonics: from optimization towards inverse creation , 2021, PhotoniX.

[3]  J. McIntosh,et al.  Regulation of microtubule dynamics, mechanics and function through the growing tip , 2021, Nature Reviews Molecular Cell Biology.

[4]  Jianlin Zhao,et al.  Deep learning wavefront sensing and aberration correction in atmospheric turbulence , 2021 .

[5]  Qionghai Dai,et al.  Evaluation and development of deep neural networks for image super-resolution in optical microscopy , 2021, Nature Methods.

[6]  A. Descloux,et al.  Parameter-free image resolution estimation based on decorrelation analysis , 2019, Nature Methods.

[7]  Yoshikatsu Sato,et al.  A photostable fluorescent marker for the superresolution live imaging of the dynamic structure of the mitochondrial cristae , 2019, Proceedings of the National Academy of Sciences.

[8]  Alberto Diaspro,et al.  A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM , 2019, Nature Methods.

[9]  A. Ozcan,et al.  Deep learning enables cross-modality super-resolution in fluorescence microscopy , 2018, Nature Methods.

[10]  J. Lippincott-Schwartz,et al.  Visualizing Intracellular Organelle and Cytoskeletal Interactions at Nanoscale Resolution on Millisecond Timescales , 2018, Cell.

[11]  G. Koenderink,et al.  Actin–microtubule crosstalk in cell biology , 2018, Nature Reviews Molecular Cell Biology.

[12]  Christophe Zimmer,et al.  Deep learning massively accelerates super-resolution localization microscopy , 2018, Nature Biotechnology.

[13]  Liangyi Chen,et al.  Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy , 2018, Nature Biotechnology.

[14]  Daniel S. Kermany,et al.  Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning , 2018, Cell.

[15]  Alberto Diaspro,et al.  STED super-resolved microscopy , 2018, Nature Methods.

[16]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[17]  Jan Kautz,et al.  Loss Functions for Image Restoration With Neural Networks , 2017, IEEE Transactions on Computational Imaging.

[18]  Radek Macháň,et al.  Multiple signal classification algorithm for super-resolution fluorescence microscopy , 2016, Nature Communications.

[19]  Lei Zhang,et al.  Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising , 2016, IEEE Transactions on Image Processing.

[20]  Suliana Manley,et al.  Quantitative evaluation of software packages for single-molecule localization microscopy , 2015, Nature Methods.

[21]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[22]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[23]  Štefan Bálint,et al.  Correlative live-cell and superresolution microscopy reveals cargo transport dynamics at microtubule intersections , 2013, Proceedings of the National Academy of Sciences.

[24]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[25]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[26]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[27]  Andrew L. Maas Rectifier Nonlinearities Improve Neural Network Acoustic Models , 2013 .

[28]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..