Admissible experimental designs in multiple polynomial regression
暂无分享,去创建一个
[1] J. Kiefer,et al. The Equivalence of Two Extremum Problems , 1960, Canadian Journal of Mathematics.
[2] Corwin L. Atwood,et al. Optimal and Efficient Designs of Experiments , 1969 .
[3] Z. Galil,et al. Comparison of design for quadratic regression on cubes , 1977 .
[4] J. Kiefer. Construction and optimality of generalized Youden designs II , 1975 .
[5] Sylvain Ehrenfeld,et al. Complete Class Theorems in Experimental Design , 1956 .
[6] J. Kiefer. General Equivalence Theory for Optimum Designs (Approximate Theory) , 1974 .
[7] J. Kiefer,et al. Optimum Designs in Regression Problems , 1959 .
[8] F. Graybill,et al. Matrices with Applications in Statistics. , 1984 .
[9] K. Schneider,et al. Invariant admissible and optimal designs in cubic regression on the v-ball , 1992 .
[10] F. Pukelsheim. Information increasing orderings in experimental design theory , 1987 .
[11] L. Pesotchinsky,et al. Phi sub p-Optimal Second Order Designs for Symmetric Regions , 1978 .
[12] Kazumasa Kôno,et al. OPTIMUM DESIGN FOR QUADRATIC REGRESSION ON k-CUBE , 1962 .
[13] J. Kiefer. Optimum Experimental Designs , 1959 .
[14] R. H. Farrell,et al. Optimum multivariate designs , 1967 .
[15] Norbert Gaffke,et al. Further Characterizations of Design Optimality and Admissibility for Partial Parameter Estimation in Linear Regression , 1987 .
[16] W. J. Studden,et al. Optimal Experimental Designs , 1966 .
[17] Berthold Heiligers,et al. Admissibility of experimental designs in linear regression with constant term , 1991 .
[18] W. J. Studden,et al. Efficient $D_s$-Optimal Designs for Multivariate Polynomial Regression on the $q$-Cube , 1988 .
[19] I. Olkin,et al. Inequalities: Theory of Majorization and Its Applications , 1980 .
[20] L. L. Pesotchinsky,et al. D-optimum and quasi-D-optimum second-order designs on a cube , 1975 .
[21] Z. Galil,et al. Comparison of Rotatable Designs for Regression on Balls , 1977 .