First-Principles Calculations of Complex Metal-Oxide Materials

The application of first-principles methods to the study of complex-structured oxides, primarily spinels and pyrochlores, is reviewed. The primary focus is on the crystal structure and structural energetics, and on the magnetic ordering when present. Results are presented for the structure and magnetic exchange interactions of a wide range of systems. The first-principles results for phonon frequencies and eigenvectors are seen to compare well to values from infrared and Raman spectroscopy. The first-principles investigation of magnetostructural coupling is discussed. The first-principles results presented can provide valuable information and insight into the physics of these systems, especially in the case of magnetic and/or structural frustration. Challenges and prospects for future research are identified.

[1]  Roser Valentí,et al.  Na2V3O7: a frustrated nanotubular system with spin-1/2 diamond ring geometry. , 2005, Physical review letters.

[2]  Olle Eriksson,et al.  Electronic structure, magnetic, and cohesive properties of LixMn2O4: Theory , 2002 .

[3]  Strong-correlation effects in Born effective charges , 2003, cond-mat/0303293.

[4]  William J. Weber,et al.  Theoretical study of disorder in Ti-substituted La 2 Zr 2 O 7 , 2002 .

[5]  E. Kurmaev,et al.  VALENCE STATES OF COPPER IONS AND ELECTRONIC STRUCTURE OF LICU2O2 , 1998 .

[6]  A. Romero,et al.  First-principles study of the high-pressure phase transition in ZnAl 2 O 4 and ZnGa 2 O 4 : From cubic spinel to orthorhombic post-spinel structures , 2009 .

[7]  F. Gervais,et al.  Ab initio investigation of phonon modes in the MgAl2O4 spinel , 2002 .

[8]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[9]  Stefano de Gironcoli,et al.  Structural, electronic, and magnetic properties ofFe2SiO4fayalite: Comparison of LDA and GGA results , 2003 .

[10]  Lars Stixrude,et al.  First-principles calculation of defect-formation energies in the Y 2 (Ti,Sn,Zr) 2 O 7 pyrochlore , 2004 .

[11]  C. Fang,et al.  Lattice and local-mode vibrations in anhydrous and protonized LiMn2O4 spinels from first-principles theory , 2007 .

[12]  H. Koo Two-leg spin ladder model for Ag2VOP2O7 from mapping analysis based on first principles density functional calculations , 2009 .

[13]  M. Whangbo,et al.  Determination of the spin-lattice relevant for the quaternary magnetic oxide Bi4Cu3V2O14 on the basis of tight-binding and density functional calculations. , 2008, Inorganic chemistry.

[14]  R. Benedek,et al.  Phase stability of cation-doped LiMnO2 within the GGA+U approximation , 2008 .

[15]  Theory of ferroelectrics: a vision for the next decade and beyond , 1999, cond-mat/9904268.

[16]  C. Geibel,et al.  Magnetic properties of Ag2VOP2O7: An unexpected spin dimer system , 2008, 0802.2293.

[17]  Testa,et al.  Green's-function approach to linear response in solids. , 1987, Physical review letters.

[18]  B. Bouhafs,et al.  Full-potential calculations of structural, elastic and electronic properties of MgAl2O4 and ZnAl2O4 compounds , 2005 .

[19]  X. Zu,et al.  Structural and bonding properties of stannate pyrochlores : A density functional theory investigation , 2008 .

[20]  Electronic dielectric constants of insulators calculated by the polarization method , 1998, cond-mat/9806045.

[21]  Effects of Fe substitution on the electronic, transport, and magnetic properties of ZnGa2O4: A systematic ab initio study , 2006, cond-mat/0601226.

[22]  Suppression of Jahn–Teller distortion by chromium and magnesium doping in spinel LiMn2O4: A first-principles study using GGA and GGA+U , 2009, 0907.1803.

[23]  K. Schwarz,et al.  Metallic "ferroelectricity" in the pyrochlore Cd2Re2O7. , 2004, Physical review letters.

[24]  A. P. Ramirez Geometrically Frustrated Matter—Magnets to Molecules , 2005 .

[25]  Roberto Dovesi,et al.  The Periodic Hartree‐Fock Method and Its Implementation in the CRYSTAL Code , 2000 .

[26]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[27]  Frustration in the coupled rattler system KOs 2 O 6 , 2006, cond-mat/0604074.

[28]  Fei Gao,et al.  First-principles study of electronic properties of La2Hf2O7 and Gd2Hf2O7 , 2007 .

[29]  M. Whangbo,et al.  Investigation of the spin exchange interactions in the nanotube system Na2V3O7 by spin dimer analysis , 2000 .

[30]  U. V. Waghmare,et al.  First-principles study of spontaneous polarization in multiferroic BiFeO 3 , 2005 .

[31]  G. Bertrand,et al.  Full potential linearized augmented plane wave investigations of structural and electronic properties of pyrochlore systems , 2004 .

[32]  John B. Goodenough,et al.  Magnetism and the chemical bond , 1963 .

[33]  H. Ishida,et al.  Electronic structure of SrVO3(001) surfaces: a local-density approximation plus dynamical mean-field theory calculation , 2006 .

[34]  X. Yao,et al.  Structures, Phase Transformations, and Dielectric Properties of Pyrochlores Containing Bismuth , 2005 .

[35]  David J. Singh,et al.  First-principles investigation of MnFe 2 O 4 , 2002 .

[36]  Marvin L. Cohen,et al.  THEORY OF STATIC STRUCTURAL PROPERTIES, CRYSTAL STABILITY, AND PHASE TRANSFORMATIONS: APPLICATION TO Si AND Ge , 1982 .

[37]  L. Sandratskii Noncollinear magnetism in itinerant-electron systems: Theory and applications , 1998 .

[38]  Electronic structure of LiMnO2: A comparative study of the LSDA and LSDA+U methods , 2006, cond-mat/0604657.

[39]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[40]  Electronic structures of normal and inverse spinel ferrites from first principles , 2006, cond-mat/0608168.

[41]  Z. Hiroi,et al.  Unprecedented Superconductivity in -Pyrochlore Osmate KOs 2 O 6 , 2004 .

[42]  Nicola A. Spaldin,et al.  Recent progress in first-principles studies of magnetoelectric multiferroics , 2005 .

[43]  R. Harrison,et al.  A computational study of order-disorder phenomena in Mg2TiO4 spinel (qandilite) , 2008 .

[44]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[45]  Chao Jiang,et al.  First-principles prediction of disordering tendencies in pyrochlore oxides , 2009 .

[46]  G. Ceder,et al.  First-principles study of magnetism in spinel MnO2 , 2003 .

[47]  D. Sarma,et al.  Origin of ferromagnetism and its pressure and doping dependence in Tl2Mn2O7. , 2006, Physical review letters.

[48]  K. Schwarz,et al.  Geometric frustration, electronic instabilities, and charge singlets in Y2Nb2O7. , 2004, Physical review letters.

[49]  Astronomy,et al.  Metric tensor formulation of strain in density-functional perturbation theory , 2004, cond-mat/0409269.

[50]  F. Karadağ,et al.  Cluster ab initio modeling of local lattice instability in relaxor ferroelectrics , 2004 .

[51]  R. Benedek,et al.  Dopant-induced stabilization of rhombohedralLiMnO2against Jahn-Teller distortion , 2005 .

[52]  G. D. Price,et al.  First-principles simulation of high-pressure polymorphs in MgAl2O4 , 2008 .

[53]  U. Waghmare,et al.  Electronic structure, phonons, and dielectric anomaly in ferromagnetic insulating double pervoskite La2NiMnO6. , 2008, Physical review letters.

[54]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[55]  A. Yaresko Electronic band structure and exchange coupling constants in A Cr 2 X 4 spinels ( A = Zn , Cd, Hg; X = O , S, Se) , 2007, 0710.2504.

[56]  Ferreira,et al.  Special quasirandom structures. , 1990, Physical review letters.

[57]  Richard M. Martin Electronic Structure: Frontmatter , 2004 .

[58]  Siqi Shi,et al.  Jahn–Teller distortion and electronic structure of LiMn2O4 , 2009 .

[59]  Peihong Zhang,et al.  Ab Initio calculations of phonon splitting in antiferromagnetic ZnCr 2 O 4 , 2007 .

[60]  C. Cheng,et al.  Long-range antiferromagnetic interactions in ZnFe$_{2}$O$_{4}$ and CdFe$_{2}$O$_{4}$ , 2008 .

[61]  Yu.,et al.  Linear-response calculations within the linearized augmented plane-wave method. , 1994, Physical review. B, Condensed matter.

[62]  David J. Singh Magnetic and electronic properties of LiMnO 2 s , 1997 .

[63]  A. Asthagiri,et al.  First-principles study of cubic Bi pyrochlores , 2008 .

[64]  Martin,et al.  Quantum-mechanical theory of stress and force. , 1985, Physical review. B, Condensed matter.

[65]  K. Rabe,et al.  Physics of thin-film ferroelectric oxides , 2005, cond-mat/0503372.

[66]  Xavier Gonze,et al.  First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm , 1997 .

[67]  P. Anderson,et al.  Symmetry Considerations on Martensitic Transformations: "Ferroelectric" Metals? , 1965 .

[68]  Kelly,et al.  First-principles calculation of the magnetocrystalline anisotropy energy of iron, cobalt, and nickel. , 1990, Physical review. B, Condensed matter.

[69]  K. Doll,et al.  Phonons and crystal structures of the β -pyrochlore superconductors KOs 2 O 6 and RbOs 2 O 6 from micro-Raman spectroscopy , 2008 .

[70]  V. A. Gubanov,et al.  Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys , 1987 .

[71]  Nicola A. Spaldin,et al.  The origin of ferroelectricity in magnetoelectric YMnO3 , 2004, Nature materials.

[72]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[73]  X. Zu,et al.  Theoretical investigation of structural, energetic and electronic properties of titanate pyrochlores , 2007 .

[74]  G. Guo,et al.  Electronic structure, magnetism, and optical properties of Fe 2 SiO 4 fayalite at ambient and high pressures: A GGA¿U study , 2004 .

[75]  F. Totti,et al.  A Few Comments on the Application of Density Functional Theory to the Calculation of the Magnetic Structure of Oligo-Nuclear Transition Metal Clusters. , 2009, Journal of chemical theory and computation.

[76]  Atsuto Seko,et al.  First-principles study of cation disordering in MgAl2O4 spinel with cluster expansion and Monte Carlo simulation , 2006 .

[77]  A. Fujimori,et al.  Electronic structure of spinel-type LiV 2 O 4 , 1999, cond-mat/9904004.

[78]  A. Walsh,et al.  A theoretical and experimental study of the distorted pyrochlore Bi2Sn2O7 , 2006 .

[79]  Silvia Picozzi,et al.  First principles studies of multiferroic materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[80]  G. Guo,et al.  First-principles investigations of the magnetocrystalline anisotropy in strained Co-substituted magnetite (CoFe2O4)☆ , 2002 .

[81]  R. Cava,et al.  Static disorder from lone-pair electrons in Bi2−xMxRu2O7−y (M=Cu,Co; x=0,0.4) pyrochlores , 2002 .

[82]  J. Maier,et al.  Hybrid DFT calculations of the atomic and electronic structure for ABO3 perovskite (001) surfaces , 2005 .

[83]  Razvan Caracas,et al.  Theoretical determination of the Raman spectra of MgSiO3 perovskite and post‐perovskite at high pressure , 2006, cond-mat/0603222.

[84]  Shi,et al.  Mean-field approach to magnetic ordering in highly frustrated pyrochlores. , 1991, Physical review. B, Condensed matter.

[85]  K. Rabe Lattice Instabilities of Perovskite Oxides from First Principles , 2004 .

[86]  C. Vittoria,et al.  Calculation of exchange integrals and electronic structure for manganese ferrite , 2002 .

[87]  D. Hamann,et al.  Generalized-gradient-functional treatment of strain in density-functional perturbation theory , 2005 .

[88]  Structural, Electronic, and Magnetic Properties of MnO , 2000, cond-mat/0012340.

[89]  G. Guo,et al.  First-principles investigations of the electronic structure and magnetocrystalline anisotropy in strained magnetite Fe 3 O 4 , 2002 .

[90]  R. Seshadri Lone pairs in insulating pyrochlores: Ice rules and high-k behavior , 2005, cond-mat/0507634.

[91]  David J. Singh Electronic structure of NaCo 2 O 4 , 2000 .

[92]  F. Walz,et al.  The Verwey transition - a topical review , 2002 .

[93]  Allan,et al.  Dielectric tensor, effective charges, and phonons in alpha -quartz by variational density-functional perturbation theory. , 1992, Physical review letters.

[94]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[95]  Christopher S. Johnson,et al.  Divalent-dopant criterion for the suppression of Jahn-Teller distortion in Mn oxides: First-principles calculations and x-ray absorption spectroscopy measurements for Co in LiMnO 2 , 2003 .

[96]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[97]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[98]  M. Zema,et al.  Effect of high pressure on competing exchange couplings inLi2VOSiO4 , 2008 .

[99]  Gerbrand Ceder,et al.  Structural stability of lithium manganese oxides , 1999 .

[100]  David J. Singh Magnetoelectronic effects in pyrochlore Tl 2 Mn 2 O 7 : Role of Tl-O covalency , 1997 .

[101]  G. Kresse,et al.  SrTiO 3 and BaTiO 3 revisited using the projector augmented wave method: Performance of hybrid and semilocal functionals , 2008 .

[102]  K. Lee,et al.  Charge disproportionation and spin ordering tendencies in Na x CoO 2 , 2004, cond-mat/0403018.

[103]  Zhigang Wu,et al.  More accurate generalized gradient approximation for solids , 2005, cond-mat/0508004.

[104]  X. Zu,et al.  First-principles study of structural and energetic properties of A2Hf2O7 (A=Dy, Ho, Er) compounds , 2008 .

[105]  A. Bouhemadou,et al.  Pseudo-potential calculations of structural and elastic properties of spinel oxides ZnX2O4 (X=Al, Ga, In) under pressure effect , 2006 .

[106]  Jon W. Taylor,et al.  Ab initio lattice dynamics calculation of vibrational density of states and Raman active modes of the olivine mineral Ni2SiO4 , 2008 .

[107]  K. Yamauchi,et al.  Ferroelectricity in multiferroic magnetite Fe 3 O 4 driven by noncentrosymmetric Fe 2 + / Fe 3 + charge-ordering: First-principles study , 2009, 0906.0492.

[108]  R. Feynman Forces in Molecules , 1939 .

[109]  NMR and local-density-approximation evidence for spiral magnetic order in the chain cuprate LiCu2O2 , 2003, cond-mat/0312706.

[110]  Wei,et al.  Electronic origins of the magnetic phase transitions in zinc-blende Mn chalcogenides. , 1993, Physical review. B, Condensed matter.

[111]  K. Maiti Role of spin―orbit coupling and electron correlation in the electronic structure of a 5d pyrochlore, Y2Ir2O7 , 2009 .