Ultrasound real-time elastography can predict malignancy in BI-RADS®-US 3 lesions
暂无分享,去创建一个
[1] M. Plummer,et al. International agency for research on cancer. , 2020, Archives of pathology.
[2] W. Fritz,et al. WHO — IARC — Annual Report 1978. 185 Seiten. International Agency for Research on Cancer, Lyon 1978. Preis: 12,– sfrs , 1980 .
[3] R. Newcombe,et al. Interval estimation for the difference between independent proportions: comparison of eleven methods. , 1998, Statistics in medicine.
[4] A. Jemal,et al. Global cancer statistics , 2011, CA: a cancer journal for clinicians.
[5] Leila Mohammadi,et al. BMC Cancer , 2001 .
[6] L. Liberman,et al. Breast imaging reporting and data system (BI-RADS). , 2002, Radiologic clinics of North America.
[7] J. Radolf,et al. Bull’s eye: Unraveling the medical mystery of Lyme disease , 2004 .
[8] [Contributions of the epidemiological cancer registries to the evaluation of mammography screening in Germany]. , 2005, Gesundheitswesen (Bundesverband der Arzte des Offentlichen Gesundheitsdienstes (Germany)).
[9] J. Ferlay,et al. Global Cancer Statistics, 2002 , 2005, CA: a cancer journal for clinicians.
[10] Beiträge bevölkerungsbezogener Krebsregister zur Evaluation des bundesweiten Mammographie-Screenings , 2005 .
[11] T. Matsumura,et al. Breast disease: clinical application of US elastography for diagnosis. , 2006, Radiology.
[12] R. Schulz-Wendtland,et al. [BI-RADS-analogue DEGUM criteria for findings in breast ultrasound--consensus of the DEGUM Committee on Breast Ultrasound]. , 2006, Ultraschall in der Medizin.
[13] K. Winzer,et al. Real‐time elastography — an advanced method of ultrasound: first results in 108 patients with breast lesions , 2006, Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology.
[14] D. M. Parkin,et al. Use of Statistics to Assess the Global Burden of Breast Cancer , 2006, The breast journal.
[15] Gabriela Marinoschi,et al. Acoustic radiation force imaging sonoelastography for noninvasive staging of liver fibrosis. , 2009, World journal of gastroenterology.
[16] Sonoelastografie: Welche Verfahren gibt es? Wie sind Handhabung und Reproduzierbarkeit im klinischen Alltag? , 2009 .
[17] P. Boyle,et al. World Cancer Report 2008 , 2009 .
[18] K. Kim,et al. Computer-aided analysis of ultrasound elasticity images for classification of benign and malignant breast masses. , 2010, AJR. American journal of roentgenology.
[19] Die Real-Time Sonoelastografie in der Mammadiagnostik – Limitationen der Methode , 2010 .
[20] S. Wojcinski,et al. Multicenter study of ultrasound real-time tissue elastography in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the BI-RADS®-US classification system with sonoelastography. , 2010, Ultraschall in der Medizin.
[21] Sebastian Wojcinski,et al. Significant differentiation of focal breast lesions: calculation of strain ratio in breast sonoelastography. , 2010, Academic radiology.
[22] Colleen H. Neal,et al. Ultrasonographic differentiation of malignant from benign breast lesions: a meta-analytic comparison of elasticity and BIRADS scoring , 2012, Breast Cancer Research and Treatment.
[23] Amanda E Lackey,et al. The Utility of the "Bull's-Eye" Artifact on Breast Elasticity Imaging in Reducing Breast Lesion Biopsy Rate , 2011, Ultrasound quarterly.
[24] A. Jemal,et al. Global Cancer Statistics , 2011 .
[25] The influence of technical factors on sonoelastographic assessment of solid breast nodules. , 2010, Ultraschall in der Medizin.
[26] Michael Cassel,et al. Variations in the Elasticity of Breast Tissue During the Menstrual Cycle Determined by Real‐time Sonoelastography , 2012, Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine.
[27] H Hille,et al. The Accuracy of BI-RADS Classification of Breast Ultrasound as a First-Line Imaging Method , 2011, Ultraschall in der Medizin.
[28] K. Kagan,et al. [Sonographic criteria for the differentiation of benign and malignant breast lesions using real-time spatial compound imaging in combination with XRES adaptive image processing]. , 2010, Ultraschall in der Medizin.