A general iterative scheme for nonexpansive mappings and inverse-strongly monotone mappings

In this paper, we introduce an general iterative scheme for finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of the variational inequality for an inverse-strongly monotone mapping in a Hilbert space. We show that the iterative sequence converges strongly to a common element of the two sets. Using this results, we consider the problem of finding a common fixed point of a nonexpansive mapping and a strictly pseudocontractive mapping and the problem of finding a common element of the set of fixed points of a nonexpansive mapping and the set of zeros of an inverse-strongly monotone mapping. The results of this paper extended and improved the results of Iiduka and Takahashi (Nonlinear Anal. 61:341–350, 2005).