Polyhedral Mesh Quality Indicator for the Virtual Element Method

We present the design of a mesh quality indicator that can predict the behavior of the Virtual Element Method (VEM) on a given mesh family or finite sequence of polyhedral meshes (dataset). The mesh quality indicator is designed to measure the violation of the mesh regularity assumptions that are normally considered in the convergence analysis. We investigate the behavior of this new mathematical tool on the lowest-order conforming approximation of the three-dimensional Poisson equation. This work also assesses the convergence rate of the VEM when applied to very general polyhedral meshes, including non convex and skewed threedimensional elements. Such meshes are created within an original mesh generation framework, which is designed to allow the generation of meshes with very different sizes, connectivity and geometrical properties. The obtained results show a significant correlation between the quality measured a priori by the indicator and the effective performance of the VEM.

[1]  Gianmarco Manzini,et al.  The role of mesh quality and mesh quality indicators in the virtual element method , 2021, Advances in Computational Mathematics.

[2]  Glaucio H. Paulino,et al.  Bridging art and engineering using Escher-based virtual elements , 2015 .

[3]  G. Burton Sobolev Spaces , 2013 .

[4]  Marco Livesu,et al.  Cinolib: A Generic Programming Header Only C++ Library for Processing Polygonal and Polyhedral Meshes , 2019, Trans. Comput. Sci..

[5]  Peter Wriggers,et al.  A virtual element method for contact , 2016 .

[6]  Paola F. Antonietti,et al.  The conforming virtual element method for polyharmonic problems , 2018, Comput. Math. Appl..

[7]  G. Manzini,et al.  Virtual elements for Maxwell's equations , 2021, Comput. Math. Appl..

[8]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[9]  Silvia Biasotti,et al.  A Geometric Approach for Computing the Kernel of a Polyhedron , 2021, ArXiv.

[10]  Daniela Cabiddu,et al.  VEM and the Mesh , 2021, ArXiv.

[11]  Stefano Berrone,et al.  The virtual element method for discrete fracture network simulations , 2014 .

[12]  G. Manzini,et al.  SUPG stabilization for the nonconforming virtual element method for advection–diffusion–reaction equations , 2018, Computer Methods in Applied Mechanics and Engineering.

[13]  Stéphane Bordas,et al.  Virtual and smoothed finite elements: A connection and its application to polygonal/polyhedral finite element methods , 2015 .

[14]  Ilaria Perugia,et al.  A Plane Wave Virtual Element Method for the Helmholtz Problem , 2015, 1505.04965.

[15]  L. B. D. Veiga,et al.  A virtual element method with arbitrary regularity , 2014 .

[16]  Susanne C. Brenner,et al.  Some Estimates for Virtual Element Methods , 2017, Comput. Methods Appl. Math..

[17]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[18]  Lorenzo Mascotto,et al.  Ill‐conditioning in the virtual element method: Stabilizations and bases , 2017, 1705.10581.

[19]  Robert Bridson,et al.  Fast Poisson disk sampling in arbitrary dimensions , 2007, SIGGRAPH '07.

[20]  L. Mascotto,et al.  Exploring high-order three dimensional virtual elements: Bases and stabilizations , 2017, Comput. Math. Appl..

[21]  Felipe Lepe,et al.  A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges , 2021, J. Sci. Comput..

[22]  Franco Dassi,et al.  High-order Virtual Element Method on polyhedral meshes , 2017, Comput. Math. Appl..

[23]  Hang Si,et al.  TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator , 2015, ACM Trans. Math. Softw..

[24]  Franco Brezzi,et al.  Virtual Element Methods for plate bending problems , 2013 .

[25]  Ahmed Alsaedi,et al.  Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..

[26]  G. Vacca,et al.  The p- and hp-versions of the virtual element method for elliptic eigenvalue problems , 2018, Comput. Math. Appl..

[27]  Gianmarco Manzini,et al.  The NonConforming Virtual Element Method for the Stokes Equations , 2016, SIAM J. Numer. Anal..

[28]  Gianmarco Manzini,et al.  Conforming and nonconforming virtual element methods for elliptic problems , 2015, 1507.03543.

[29]  Gianmarco Manzini,et al.  The nonconforming Virtual Element Method for eigenvalue problems , 2018, ESAIM: Mathematical Modelling and Numerical Analysis.

[30]  Gianmarco Manzini,et al.  The Virtual Element Method for Eigenvalue Problems with Potential Terms on Polytopic Meshes , 2018, Applications of Mathematics.

[31]  Chris H Rycroft,et al.  VORO++: a three-dimensional voronoi cell library in C++. , 2009, Chaos.

[32]  Emmanuil H. Georgoulis,et al.  A posteriori error estimates for the virtual element method , 2016, Numerische Mathematik.

[33]  G. Manzini,et al.  Extended virtual element method for the Laplace problem with singularities and discontinuities , 2019, Computer Methods in Applied Mechanics and Engineering.

[34]  Gianmarco Manzini,et al.  Residual a posteriori error estimation for the Virtual Element Method for elliptic problems , 2015 .

[35]  L. Beirao da Veiga,et al.  The Stokes Complex for Virtual Elements with Application to Navier–Stokes Flows , 2018, Journal of Scientific Computing.

[36]  Franco Brezzi,et al.  The Hitchhiker's Guide to the Virtual Element Method , 2014 .

[37]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[38]  P. F. Antonietti,et al.  The fully nonconforming virtual element method for biharmonic problems , 2016, 1611.08736.

[39]  Susanne C. Brenner,et al.  Virtual element methods on meshes with small edges or faces , 2017, Mathematical Models and Methods in Applied Sciences.

[40]  Gianmarco Manzini,et al.  A posteriori error estimation and adaptivity in hp virtual elements , 2018, Numerische Mathematik.