Fuzzy model validation using the local statistical approach

The local statistical approach for fault detection and isolation is applied to fuzzy models validation. The method detects the inconsistencies between a fuzzy rule base and the modelled system. It can also identify which are the faulty parameters of the fuzzy model. The Fisher information matrix explains the detectability of changes in the parameters of the fuzzy model. Simulation tests illustrate the method's credibility.

[1]  Jian Ma,et al.  An adaptive fuzzy neural network for MIMO system model approximation in high-dimensional spaces , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[2]  José Valente de Oliveira,et al.  Towards neuro-linguistic modeling: Constraints for optimization of membership functions , 1999, Fuzzy Sets Syst..

[3]  A. B ENVENISTE,et al.  Monitoring the Combustion Set of a Gas Turbine , 1994 .

[4]  Uzay Kaymak,et al.  Similarity measures in fuzzy rule base simplification , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[5]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  Lyle H. Ungar,et al.  SVD-NET: an algorithm that automatically selects network structure , 1994, IEEE Trans. Neural Networks.

[7]  Gael Mathis Outils de détection de rupture et de diagnostic : application à la surveillance de turbines à gaz , 1994 .

[8]  Li-Xin Wang,et al.  A Course In Fuzzy Systems and Control , 1996 .

[9]  Kurt Hornik,et al.  Cross-validation with active pattern selection for neural-network classifiers , 1998, IEEE Trans. Neural Networks.

[10]  Michèle Basseville,et al.  The asymptotic local approach to change detection and model validation , 1987 .

[11]  Michèle Basseville,et al.  Subspace-based Fault Detection and Isolation Methods - Application to Vibration Monitoring , 1997 .

[12]  Michèle Basseville,et al.  Fault Detection and Isolation in Nonlinear Dynamic Systems: A Combined Input-Output and Local Approach , 1998, Autom..

[13]  Michèle Basseville,et al.  On-board Component Fault Detection and Isolation Using the Statistical Local Approach , 1998, Autom..

[14]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[15]  Rolf Isermann,et al.  Identification methods for experimental modeling of nonlinear combustion processes , 2006 .

[16]  Rolf Isermann,et al.  Local basis function networks for identification of a turbocharger , 1996 .

[17]  Didier Dubois,et al.  Checking the coherence and redundancy of fuzzy knowledge bases , 1997, IEEE Trans. Fuzzy Syst..

[18]  Kenji Fukumizu,et al.  A Regularity Condition of the Information Matrix of a Multilayer Perceptron Network , 1996, Neural Networks.

[19]  W. Pedrycz Why triangular membership functions , 1994 .

[20]  Kenji Fukumizu,et al.  Statistical active learning in multilayer perceptrons , 2000, IEEE Trans. Neural Networks Learn. Syst..

[21]  Lamia Berrah,et al.  Fuzzy handling of measurement errors in instrumentation , 2000, IEEE Trans. Instrum. Meas..

[22]  Qinghua Zhang,et al.  Surveillance d'installations industrielles: démarche générale et conception de l'algorithmique , 1996 .

[23]  J. Polzehl,et al.  Structure adaptive approach for dimension reduction , 2001 .

[24]  Dan Simon,et al.  Training fuzzy systems with the extended Kalman filter , 2002, Fuzzy Sets Syst..

[25]  Maurice Goursat,et al.  In situ damage monitoring in vibration mechanics: diagnostics and predictive maintenance , 1993 .

[26]  Reza Langari,et al.  Fuzzy Control: Synthesis and Analysis , 2000 .

[27]  Klaus-Robert Müller,et al.  Asymptotic statistical theory of overtraining and cross-validation , 1997, IEEE Trans. Neural Networks.

[28]  Michèle Basseville,et al.  Information criteria for residual generation and fault detection and isolation , 1997, Autom..

[29]  Didier Dubois,et al.  Probability-Possibility Transformations, Triangular Fuzzy Sets, and Probabilistic Inequalities , 2004, Reliab. Comput..

[30]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[31]  Michèle Basseville,et al.  Detection of Abrupt Changes: Theory and Applications. , 1995 .

[32]  Oliver Nelles,et al.  Local linear model trees (LOLIMOT) for nonlinear system identification of a cooling blast , 1996 .

[33]  Dan Simon,et al.  Sum Normal Optimization of Fuzzy Membership Functions , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[34]  Michèle Basseville,et al.  Early warning of slight changes in systems , 1994, Autom..

[35]  G. Klir,et al.  On probability-possibility transformations , 1992 .

[36]  Michèle Basseville,et al.  Detection of abrupt changes: theory and application , 1993 .

[37]  Kenji Fukumizu,et al.  Statistical Analysis of UnidentiÞable Models and its Application to Multilayer Neural Networks , 2000 .

[38]  Derek A. Linkens,et al.  A systematic neuro-fuzzy modeling framework with application to material property prediction , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[39]  John Yen,et al.  Simplifying fuzzy rule-based models using orthogonal transformation methods , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[40]  D. Bertsekas Incremental least squares methods and the extended Kalman filter , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[41]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[42]  Qinghua Zhang Fault Detection and Isolation with Nonlinear Black-Box Models , 1997 .