Modeling of spectral and statistical properties of a random distributed feedback fiber laser.

For the first time we report full numerical NLSE-based modeling of generation properties of random distributed feedback fiber laser based on Rayleigh scattering. The model which takes into account the random backscattering via its average strength only describes well power and spectral properties of random DFB fiber lasers. The influence of dispersion and nonlinearity on spectral and statistical properties is investigated. The evidence of non-gaussian intensity statistics is found.

[1]  Sergei K. Turitsyn,et al.  Random distributed feedback fiber laser , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[2]  P. Stano,et al.  Suppression of interactions in multimode random lasers in the Anderson localized regime , 2012, Nature Photonics.

[3]  J D Ania-Castañón,et al.  Experimental demonstration of mode structure in ultralong Raman fiber lasers. , 2007, Optics letters.

[4]  Yun Jiang,et al.  Novel long-distance fiber-optic sensing systems based on random fiber lasers , 2012, Asia Pacific Optical Sensors Conference.

[5]  Roman J. B. Dietz,et al.  Co-existence of strongly and weakly localized random laser modes , 2009 .

[6]  Jiang,et al.  Time dependent theory for random lasers , 2000, Physical review letters.

[7]  Sergei K Turitsyn,et al.  Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm. , 2011, Optics express.

[8]  Ying-mao Xie,et al.  A new physical model on lasing in active random media , 2005 .

[9]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[10]  M Lopez-Amo,et al.  Interrogation of a Suspended-Core Fabry–Perot Temperature Sensor Through a Dual Wavelength Raman Fiber Laser , 2010, Journal of Lightwave Technology.

[11]  Renato Torre,et al.  Amplified extended modes in random lasers. , 2004, Physical review letters.

[12]  Azriel Z. Genack,et al.  Dynamics of stimulated emission from random media , 1997 .

[13]  S. Babin,et al.  Raman fiber lasers with a random distributed feedback based on Rayleigh scattering , 2010 .

[14]  Xu,et al.  Spatial confinement of laser light in active random media , 2000, Physical review letters.

[15]  Xiaoyi Bao,et al.  Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber. , 2012, Optics letters.

[16]  S. Smirnov,et al.  Statistical properties of partially coherent cw fiber lasers. , 2010, Optics letters.

[17]  Orlando Frazão,et al.  Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering , 2011 .

[18]  Pierre Suret,et al.  Intracavity changes in the field statistics of Raman fiber lasers. , 2011, Optics letters.

[19]  J D Ania-Castañón,et al.  RIN transfer in random distributed feedback fiber lasers. , 2012, Optics express.

[20]  Michalis N. Zervas,et al.  Rayleigh scattering effect on the gain efficiency and noise of erbium-doped fiber amplifiers , 1995 .

[21]  H. Cao,et al.  Effect of local pumping on random laser modes in one dimension , 2007, physics/0701193.

[22]  Sergey Smirnov,et al.  Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers , 2012 .

[23]  Stefan Rotter,et al.  Strong Interactions in Multimode Random Lasers , 2008, Science.

[24]  A E Bednyakova,et al.  Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics. , 2011, Optics express.

[25]  S. Babin,et al.  Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation. , 2011, Optics letters.

[26]  O. Frazão,et al.  Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering , 2010 .

[27]  Hui Cao,et al.  Numerical study of amplified spontaneous emission and lasing in random media , 2010, 1008.3993.

[28]  A. Fotiadi,et al.  Iterative method for Brillouin fiber ring resonator , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[29]  Paul Harper,et al.  Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser. , 2012, Optics express.

[30]  S. Babin,et al.  Power optimization of random distributed feedback fiber lasers. , 2012, Optics express.

[31]  M. Lopez-Amo,et al.  Temperature Fiber Laser Sensor Based on a Hybrid Cavity and a Random Mirror , 2012, Journal of Lightwave Technology.

[32]  C. Vanneste,et al.  Lasing with resonant feedback in weakly scattering random systems. , 2007, Physical review letters.

[33]  J. Ania-Castañón Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings. , 2004, Optics express.

[34]  S. Smirnov,et al.  Extreme value statistics in Raman fiber lasers. , 2011, Optics letters.

[35]  A. Fotiadi,et al.  Cooperative stimulated Brillouin and Rayleigh backscattering process in optical fiber. , 1998, Optics letters.

[36]  R. Posey,et al.  Rayleigh scattering optical frequency correlation in a single-mode optical fiber. , 2001, Optics letters.

[37]  Sergey A. Babin,et al.  Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser , 2007 .

[38]  R. Smith Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering. , 1972, Applied optics.

[39]  Sergei K. Turitsyn,et al.  Tunable random fiber laser , 2011 .

[40]  A E Bednyakova,et al.  Generation dynamics of the narrowband Yb-doped fiber laser. , 2013, Optics Express.

[41]  Z N Wang,et al.  Hybrid lasing in an ultra-long ring fiber laser. , 2012, Optics express.

[42]  Kejia Wang,et al.  Theoretical investigation on temporal properties of random lasers pumped by femtosecond-lasing pulses , 2009 .