Redshifted broad absorption line quasars found via machine-learned spectral similarity
暂无分享,去创建一个
[1] A. Myers,et al. The Sloan Digital Sky Survey Quasar Catalog: Fourteenth data release , 2017, 1712.05029.
[2] H. Rix,et al. Discovery and characterization of 3000+ main-sequence binaries from APOGEE spectra , 2017, 1711.08793.
[3] Sahar Shahaf,et al. Detecting outliers and learning complex structures with large spectroscopic surveys - a case study with APOGEE stars , 2017, 1711.00022.
[4] J. Xavier Prochaska,et al. Deep learning of quasar spectra to discover and characterize damped Lyα systems , 2017, 1709.04962.
[5] D. A. García-Hernández,et al. The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Sky Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment , 2017, 1707.09322.
[6] Aniruddha R. Thakar,et al. Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe , 2017, 1703.00052.
[7] M. Bietenholz,et al. SN 1986J VLBI. III. The Central Component Becomes Dominant , 2017, 1701.08447.
[8] N. Liao,et al. Possible Quasi-periodic Modulation in the z = 1.1 Gamma-Ray Blazar PKS 0426–380 , 2017, 1701.00899.
[9] W. M. Wood-Vasey,et al. The Pan-STARRS1 Surveys , 2016, 1612.05560.
[10] D. Poznanski,et al. The weirdest SDSS galaxies: results from an outlier detection algorithm , 2016, 1611.07526.
[11] Eamonn J. Keogh,et al. CID: an efficient complexity-invariant distance for time series , 2014, Data Mining and Knowledge Discovery.
[12] Prasanth H. Nair,et al. Astropy: A community Python package for astronomy , 2013, 1307.6212.
[13] B. A. Weaver,et al. Broad Absorption Line Quasars with Redshifted Troughs: High-Velocity Infall or Rotationally Dominated Outflows? , 2013, 1306.2680.
[14] W. M. Wood-Vasey,et al. The Sloan Digital Sky Survey quasar catalog: ninth data release , 2012, 1210.5166.
[15] G. Canalizo,et al. THE NATURE OF LoBAL QSOs. I. SEDs AND MID-INFRARED SPECTRAL PROPERTIES , 2012, 1206.1827.
[16] H. Meusinger,et al. Unusual quasars from the Sloan Digital Sky Survey selected by means of Kohonen self-organising maps , 2012, 1203.0215.
[17] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[18] James T. Allen,et al. A strong redshift dependence of the broad absorption line quasar fraction , 2010, 1007.3991.
[19] Zhi-Hua Zhou,et al. Isolation Forest , 2008, 2008 Eighth IEEE International Conference on Data Mining.
[20] R. Becker,et al. THE FIRST–2MASS RED QUASAR SURVEY. II. AN ANOMALOUSLY HIGH FRACTION OF LoBALs IN SEARCHES FOR DUST-REDDENED QUASARS , 2008, 0808.3668.
[21] Robert Barkhouser,et al. The Apache Point Observatory Galactic Evolution Experiment (APOGEE) , 2007, Astronomical Telescopes + Instrumentation.
[22] Brian E. Granger,et al. IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.
[23] John D. Hunter,et al. Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.
[24] D. Ernst,et al. Extremely randomized trees , 2006, Machine Learning.
[25] S. Horvath,et al. Unsupervised Learning With Random Forest Predictors , 2006 .
[26] D. York,et al. A Catalog of Broad Absorption Line Quasars from the Sloan Digital Sky Survey Early Data Release , 2003, astro-ph/0603070.
[27] G. Canalizo,et al. Low-Ionization BAL QSOs in Ultraluminous Infrared Systems , 2001, astro-ph/0107323.
[28] F. Bonnarel,et al. The SIMBAD astronomical database. The CDS reference database for astronomical objects , 2000, astro-ph/0002110.
[29] J. Chiang,et al. Accretion Disk Winds from Active Galactic Nuclei , 1995 .
[30] Simon L. Morris,et al. Comparisons of the Emission-Line and Continuum Properties of Broad Absorption Line and Normal Quasi-stellar Objects , 1991 .
[31] G. Neugebauer,et al. Ultraluminous infrared galaxies and the origin of quasars , 1988 .
[32] Martin Krzywinski,et al. Points of Significance: Classification and regression trees , 2017, Nature Methods.
[33] Geoffrey E. Hinton,et al. Visualizing Data using t-SNE , 2008 .
[34] Teuvo Kohonen,et al. Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.
[35] John E. Davis,et al. Sloan Digital Sky Survey: Early Data Release , 2002 .
[36] L. Breiman. Random Forests , 2001, Machine Learning.
[37] D. Egret,et al. The simbad astronomical database , 1991 .
[38] T. Kohonen. Self-organized formation of topographically correct feature maps , 1982 .