Plasma physics of liquids—A focused review

The interaction of plasma with liquids has led to various established industrial implementations as well as promising applications, including high-voltage switching, chemical analysis, nanomaterial synthesis, and plasma medicine. Along with these numerous accomplishments, the physics of plasma in liquid or in contact with a liquid surface has emerged as a bipartite research field, for which we introduce here the term “plasma physics of liquids.” Despite the intensive research investments during the recent decennia, this field is plagued by some controversies and gaps in knowledge, which might restrict further progress. The main difficulties in understanding revolve around the basic mechanisms of plasma initiation in the liquid phase and the electrical interactions at a plasma-liquid interface, which require an interdisciplinary approach. This review aims to provide the wide applied physics community with a general overview of the field, as well as the opportunities for interdisciplinary research on topics, such as nanobubbles and the floating water bridge, and involving the research domains of amorphous semiconductors, solid state physics, thermodynamics, material science, analytical chemistry, electrochemistry, and molecular dynamics simulations. In addition, we provoke awareness of experts in the field on yet underappreciated question marks. Accordingly, a strategy for future experimental and simulation work is proposed.

[1]  A Widom,et al.  Theory of the Maxwell pressure tensor and the tension in a water bridge. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  A. Denat,et al.  High field conduction and prebreakdown phenomena in dielectric liquids , 2006, IEEE Transactions on Dielectrics and Electrical Insulation.

[3]  T. Lewis,et al.  An Overview of Electrical Processes Leading to Dielectric Breakdown of Liquids , 1988 .

[4]  O. Lesaint,et al.  Prebreakdown phenomena in liquids: propagation ‘modes’ and basic physical properties , 2016 .

[5]  Roald Hoffmann,et al.  A Chemical Approach to the Orbitals of Organic Polymers , 1991 .

[6]  Sung-O Kim,et al.  Triple-Coupled Intense Atmospheric Pressure Plasma Jet From Honeycomb Structural Plasma Device , 2011, IEEE Transactions on Plasma Science.

[7]  Young I Cho,et al.  Non-equilibrium plasma in liquid water: dynamics of generation and quenching , 2010, ICOPS 2010.

[8]  J. Seddon,et al.  Nanobubble-Nanoparticle Interactions in Bulk Solutions. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[9]  P. Lukeš,et al.  Discharge Filamentary Patterns Produced by Pulsed Corona Discharge at the Interface Between a Water Surface and Air , 2011, IEEE Transactions on Plasma Science.

[10]  Bruce R. Locke,et al.  Electrohydraulic Discharge and Nonthermal Plasma for Water Treatment , 2006 .

[11]  Y. Duan,et al.  Plasma-based ambient mass spectrometry techniques: The current status and future prospective. , 2015, Mass spectrometry reviews.

[12]  D. Lohse,et al.  Superstability of surface nanobubbles. , 2007, Physical review letters.

[13]  Bene Poelsema,et al.  Surface bubble nucleation stability. , 2010, Physical review letters.

[14]  O. Lesaint,et al.  Study of streamer inception in cyclohexane with a sensitive charge measurement technique under impulse voltage , 2001 .

[15]  O. Lesaint,et al.  On the gaseous nature of positive filamentary streamers in hydrocarbon liquids. II: Propagation, growth and collapse of gaseous filaments in pentane , 1994 .

[16]  K. Berggren,et al.  Mapping Photoemission and Hot-Electron Emission from Plasmonic Nanoantennas. , 2017, Nano letters.

[17]  A. Seitsonen,et al.  Oxidation of Metal Surfaces , 2002, Science.

[18]  E. Burkel Phonon spectroscopy by inelastic x-ray scattering , 2000 .

[19]  A. Fridman,et al.  Theoretical study of the initial stage of sub-nanosecond pulsed breakdown in liquid dielectrics , 2012, IEEE Transactions on Dielectrics and Electrical Insulation.

[20]  V. Lazic,et al.  Laser induced breakdown spectroscopy inside liquids: Processes and analytical aspects , 2014 .

[21]  D. Fornasiero,et al.  Very Small Bubble Formation at the Solid−Water Interface , 2003 .

[22]  M. Alheshibri,et al.  A History of Nanobubbles. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[23]  Joseph C. Oefelein,et al.  Understanding high-pressure gas-liquid interface phenomena in Diesel engines , 2013 .

[24]  S. V. Gudkov,et al.  Formation and Dynamics of Ion-Stabilized Gas Nanobubble Phase in the Bulk of Aqueous NaCl Solutions. , 2016, The journal of physical chemistry. B.

[25]  Felix Franks,et al.  Water:A Comprehensive Treatise , 1972 .

[26]  F. Uhlig,et al.  Direct observation of the collapse of the delocalized excess electron in water. , 2014, Nature chemistry.

[27]  Jun Hu,et al.  In situ measurement of contact angles and surface tensions of interfacial nanobubbles in ethanol aqueous solutions. , 2016, Soft matter.

[28]  B. Schwartz,et al.  Does the Hydrated Electron Occupy a Cavity? , 2010, Science.

[29]  P. Bruggeman,et al.  Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet , 2013 .

[30]  Bruce R. Locke,et al.  Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water , 2011 .

[31]  P. Bruggeman,et al.  Time and spatial resolved optical and electrical characteristics of continuous and time modulated RF plasmas in contact with conductive and dielectric substrates , 2014 .

[32]  T. Tuziuti,et al.  Advanced dynamic-equilibrium model for a nanobubble and a micropancake on a hydrophobic or hydrophilic surface. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Ying Sun,et al.  50+ years of intrinsic breakdown , 2013, IEEE Electrical Insulation Magazine.

[34]  Experimental approach of the relation between surface tension and interfacial thickness of simple liquids. , 2009, Journal of colloid and interface science.

[35]  L. González,et al.  Static, dynamic and electronic properties of expanded fluid mercury in the metal–nonmetal transition range. An ab initio study , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  B. M. Smirnov,et al.  Kinetic and electrical phenomena in gas–liquid systems , 2016 .

[37]  H. Murai Spin-chemical approach to photochemistry: reaction control by spin quantum operation , 2003 .

[38]  David Alan Drabold,et al.  Electrons and phonons in amorphous semiconductors , 2016 .

[39]  Jin Zhao,et al.  Solvated electrons on metal oxide surfaces. , 2006, Chemical reviews.

[40]  R. Cooks,et al.  Thermal production and reactions of organic ions at atmospheric pressure. , 2006, Angewandte Chemie.

[41]  P. Lukeš,et al.  The catalytic role of tungsten electrode material in the plasmachemical activity of a pulsed corona discharge in water , 2011 .

[42]  S. Manalis,et al.  Weighing of biomolecules, single cells and single nanoparticles in fluid , 2007, Nature.

[43]  S. A. Thorpe,et al.  Wave-produced bubbles observed by side-scan sonar , 1982, Nature.

[44]  B. Radjenovic,et al.  A Particle‐in‐Cell Simulation of the Breakdown Mechanism in Microdischarges with an Improved Secondary Emission Model , 2007 .

[45]  Dielectric fluid in inhomogeneous pulsed electric field. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Jrr Verlet,et al.  Plasma–liquid interactions: a review and roadmap , 2016 .

[47]  A. Melekhov,et al.  Breakdown Initiation in Water with the Aid of Bubbles , 2002 .

[48]  B. Abel,et al.  On the nature and signatures of the solvated electron in water. , 2012, Physical chemistry chemical physics : PCCP.

[49]  S. Uchida,et al.  Analysis of effect of ion irradiation to liquid surface on water molecule kinetics by classical molecular dynamics simulation , 2013 .

[50]  G. Mesyats,et al.  Ecton Mechanism of the Cathode Spot Phenomena in a Vacuum Arc , 2013, IEEE Transactions on Plasma Science.

[51]  S. Oh,et al.  Generation and Stability of Bulk Nanobubbles. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[52]  Jentaie Shiea,et al.  Ambient ionization mass spectrometry: a tutorial. , 2011, Analytica chimica acta.

[53]  Phil Attard,et al.  BUBBLES, CAVITIES, AND THE LONG-RANGED ATTRACTION BETWEEN HYDROPHOBIC SURFACES , 1994 .

[55]  A. Shahriman,et al.  Review on the development of plasma discharge in liquid solution , 2017 .

[56]  Hideaki Kobayashi,et al.  Measurements of ultrafine bubbles using different types of particle size measuring instruments , 2014, Other Conferences.

[57]  P.C.T. van der Laan,et al.  The influence of water vapor on avalanches in air , 1984 .

[58]  Jyeshtharaj B. Joshi,et al.  Bubble Formation and Bubble Rise Velocity in Gas−Liquid Systems: A Review , 2005 .

[59]  K. Weltmann,et al.  Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids , 2015 .

[60]  Ying Sun,et al.  Mechanism for composite materials with dielectric constant which increases with electric field , 2015, IEEE Transactions on Dielectrics and Electrical Insulation.

[61]  R. Bartnikas,et al.  Electrical and Optical Diagnostics of Dielectric Barrier Discharges (DBD) in He and N2 for Polymer Treatment , 2000 .

[62]  S. Boggs,et al.  The intrinsic electrical breakdown strength of insulators from first principles , 2012 .

[63]  S. Kubota,et al.  Proportional Counter Filled with Highly Purified Liquid Xenon , 1976 .

[64]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[65]  S. Lombardo,et al.  Intrinsic dielectric breakdown of ultra-thin gate oxides , 2001 .

[66]  T. Ueda,et al.  Ultra-fast pulse radiolysis: A review of the recent system progress and its application to study on initial yields and solvation processes of solvated electrons in various kinds of alcohols , 2008 .

[67]  Ph. A. Martin,et al.  Ultrafast formation of hydrated electrons in water at high concentration: Experimental evidence of the free electron , 2014 .

[68]  D. Mathur,et al.  Optical control of filamentation-induced damage to DNA by intense, ultrashort, near-infrared laser pulses , 2016, Scientific Reports.

[69]  A. Rousseau,et al.  Dynamics of plasma evolution in a nanosecond underwater discharge , 2014 .

[70]  Jungsub Kim,et al.  One-dimensional discharge simulation of nitrogen DBD atmospheric pressure plasma , 2006 .

[71]  B. Schwartz,et al.  To be or not to be in a cavity: the hydrated electron dilemma. , 2013, The journal of physical chemistry. B.

[72]  David B. Graves,et al.  Long-term antibacterial efficacy of air plasma-activated water , 2011 .

[73]  Alfredo Pasquarello,et al.  Ab initio Electronic Structure of Liquid Water. , 2016, Physical review letters.

[74]  R. W. Hellwarth,et al.  Third-order optical susceptibilities of liquids and solids , 1977 .

[75]  J. Deinert,et al.  Real-time measurement of the vertical binding energy during the birth of a solvated electron. , 2015, Journal of the American Chemical Society.

[76]  C. E. Perles,et al.  Communication: Evidence of hydrated electrons injected by a metallic electrode in a high voltage system. , 2010, The Journal of chemical physics.

[77]  Sean R. German,et al.  Phase State of Interfacial Nanobubbles , 2015 .

[78]  Fan Zhang,et al.  The thickness of native oxides on aluminum alloys and single crystals , 2015 .

[79]  C. Leys,et al.  Time-resolved characterization of a pulsed discharge in a stationary bubble , 2012 .

[80]  Rupinder Singh,et al.  Surface modification by electrical discharge machining: A review , 2009 .

[81]  P. Griffith,et al.  The mechanism of corrosion-erosion in steam extraction lines of power stations , 1988 .

[82]  Ping Zhang,et al.  Quantum molecular dynamics study of expanded beryllium: Evolution from warm dense matter to atomic fluid , 2014, Scientific Reports.

[83]  Yujin Sun,et al.  Stability theories of nanobubbles at solid-liquid interface: A review , 2016 .

[84]  S. Dewilde,et al.  Anti-cancer capacity of plasma-treated PBS: effect of chemical composition on cancer cell cytotoxicity , 2017, Scientific Reports.

[85]  G. Teyssedre,et al.  Charge transport modeling in insulating polymers: from molecular to macroscopic scale , 2005, IEEE Transactions on Dielectrics and Electrical Insulation.

[86]  Sergei V. Kukhlevsky,et al.  Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples , 2000 .

[87]  M. Pekker,et al.  Initiation stage of nanosecond breakdown in liquid , 2013, 1308.1541.

[88]  Jakob Woisetschläger,et al.  Proton production, neutralisation and reduction in a floating water bridge , 2015 .

[89]  Christian Hafner,et al.  Delayed electron emission in strong-field driven tunnelling from a metallic nanotip in the multi-electron regime , 2016, Scientific Reports.

[90]  J. Zhuang,et al.  Formation mechanism of streamer discharges in liquids: a review , 2016 .

[91]  S. Leonov,et al.  Dynamics of energy coupling and thermalization in barrier discharges over dielectric and weakly conducting surfaces on µs to ms time scales , 2014 .

[92]  C. Engelhard,et al.  Plasma-based ambient desorption/ionization mass spectrometry: state-of-the-art in qualitative and quantitative analysis , 2014, Analytical and Bioanalytical Chemistry.

[93]  K. Kan,et al.  Examination of the formation process of pre-solvated and solvated electron in n-alcohol using femtosecond pulse radiolysis , 2016 .

[94]  J. Brisset,et al.  Chemical Effects of Air Plasma Species on Aqueous Solutes in Direct and Delayed Exposure Modes: Discharge, Post-discharge and Plasma Activated Water , 2016, Plasma Chemistry and Plasma Processing.

[95]  J. Vierendeels,et al.  Dc excited glow discharges in atmospheric pressure air in pin-to-water electrode systems , 2008 .

[96]  Michael Müller,et al.  Decontamination of waterborne chemical pollutants by using atmospheric pressure nonthermal plasma: a review , 2014 .

[97]  M. Hori,et al.  The 2012 Plasma Roadmap , 2012 .

[98]  O. Rubel,et al.  Generalized lucky-drift model for impact ionization in semiconductors with disorder , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[99]  M. Malik,et al.  Water Purification by Plasmas: Which Reactors are Most Energy Efficient? , 2010 .

[100]  Harold J W Zandvliet,et al.  Knudsen gas provides nanobubble stability. , 2011, Physical review letters.

[101]  Jens Ulstrup,et al.  Kinetics of Proton Transport in Water , 2003 .

[102]  Liguo Wang,et al.  Cryo-EM Visualization of Nanobubbles in Aqueous Solutions. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[103]  B. Locke,et al.  Influence of High Voltage Needle Electrode Material on Hydrogen Peroxide Formation and Electrode Erosion in a Hybrid Gas–Liquid Series Electrical Discharge Reactor , 2008 .

[104]  F. Freund,et al.  Investigation of the mid-infrared emission of a floating water bridge , 2012 .

[105]  Mikhail N. Shneider,et al.  On the electrostrictive mechanism of nanosecond-pulsed breakdown in liquid phase , 2013, 1302.0169.

[106]  Jakob Woisetschläger,et al.  Non-equilibrium thermodynamics and collective vibrational modes of liquid water in an inhomogeneous electric field. , 2016, Physical chemistry chemical physics : PCCP.

[107]  I. Gallimberti,et al.  The mechanism of the long spark formation , 1979 .

[108]  K. Kutasi,et al.  On the reliability of low-pressure dc glow discharge modelling , 2006 .

[109]  E. Moreau,et al.  The 2017 Plasma Roadmap: Low temperature plasma science and technology , 2017 .

[110]  Zhiyao Yin,et al.  Surface charge dynamics and OH and H number density distributions in near-surface nanosecond pulse discharges at a liquid / vapor interface , 2015 .

[111]  H. Yoshikawa,et al.  Oxygen and Air Nanobubble Water Solution Promote the Growth of Plants, Fishes, and Mice , 2013, PloS one.

[112]  Wei Zheng,et al.  Temporal-spatial-resolved spectroscopic study on the formation of an atmospheric pressure microplasma jet , 2008 .

[113]  B. Cho,et al.  Plasma in dentistry: A review of basic concepts and applications in dentistry , 2014, Acta odontologica Scandinavica.

[114]  E. Schamiloglu,et al.  Are microbubbles necessary for the breakdown of liquid water subjected to a submicrosecond pulse , 2004 .

[115]  J. Eckert,et al.  Hot water corrosion behaviour of Zr-Cu-Al-Ni bulk metallic glass , 2001 .

[116]  G. Filippis,et al.  Optical conductivity of polarons: Double phonon cloud concept verified by diagrammatic Monte Carlo simulations , 2012 .

[117]  Y. Akishev,et al.  Streamers sliding on a water surface , 2017 .

[118]  Xuezeng Zhao,et al.  The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review , 2014, Beilstein journal of nanotechnology.

[119]  P. Mezei,et al.  Operating mechanism of the electrolyte cathode atmospheric glow discharge , 1996, Analytical and bioanalytical chemistry.

[120]  T. Morawietz,et al.  How van der Waals interactions determine the unique properties of water , 2016, Proceedings of the National Academy of Sciences.

[121]  Markus Zahn,et al.  Surface flashover breakdown mechanisms on liquid immersed dielectrics , 2012 .

[122]  G. Mesyats,et al.  Ectons and their role in plasma processes , 2005 .

[123]  K. Arlauskas,et al.  Impact Ionization and Mobilities of Charge Carriers at High Electric Fields in Amorphous Selenium , 1980, May 16.

[124]  G. McCracken,et al.  The behaviour of surfaces under ion bombardment , 1975 .

[125]  T. Ohshima,et al.  Aqueous Phenol Decomposition by Pulsed Discharges on the Water Surface , 2005, IEEE Transactions on Industry Applications.

[126]  O. Link,et al.  Binding energies, lifetimes and implications of bulk and interface solvated electrons in water. , 2010, Nature chemistry.

[127]  Tak W. Kee,et al.  A Unified Electron Transfer Model for the Different Precursors and Excited States of the Hydrated Electron , 2001 .

[128]  A. Bogaerts,et al.  Study of an AC dielectric barrier single micro-discharge filament over a water film , 2018, Scientific Reports.

[129]  A. Wexler,et al.  The Armstrong experiment revisited , 2014 .

[130]  P. Wernet,et al.  The Structure of the First Coordination Shell in Liquid Water , 2004, Science.

[131]  J. Nørskov,et al.  Ab initio van der waals interactions in simulations of water alter structure from mainly tetrahedral to high-density-like. , 2011, The journal of physical chemistry. B.

[132]  Kaneo Chiba,et al.  Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. , 2007, The journal of physical chemistry. B.

[133]  J. Schou,et al.  Particle emission induced by ionization tracks in water ice , 1995 .

[134]  V. Svetovoy,et al.  Collective behavior of bulk nanobubbles produced by alternating polarity electrolysis. , 2017, Nanoscale.

[135]  J. J. Auborn,et al.  High Field Conduction and Breakdown in Liquid Sulfur. , 1975 .

[136]  Vladimir E. Fortov,et al.  Physics of strongly coupled plasma , 2006 .

[137]  V. Goryachev,et al.  Mechanism of electrode erosion in pulsed discharges in water with a pulse energy of ∼ 1 J , 1997 .

[138]  Susi Lehtola,et al.  Microscopic structure of water at elevated pressures and temperatures , 2013, Proceedings of the National Academy of Sciences.

[139]  Jun Hu,et al.  Formation and Stability of Bulk Nanobubbles Generated by Ethanol-Water Exchange. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[140]  Probing the electron delocalization in liquid water and ice at attosecond time scales. , 2007, Physical review letters.

[141]  J. Rubio,et al.  Nanobubbles: Generation using a multiphase pump, properties and features in flotation , 2017 .

[142]  G. Naidis Modelling the dynamics of plasma in gaseous channels during streamer propagation in hydrocarbon liquids , 2016 .

[143]  B. Winter,et al.  Relaxation Processes in Aqueous Systems upon X-ray Ionization: Entanglement of Electronic and Nuclear Dynamics. , 2016, The journal of physical chemistry letters.

[144]  J. Vierendeels,et al.  DC Electrical Breakdown in a Metal Pin–Water Electrode System , 2008, IEEE Transactions on Plasma Science.

[145]  M. Mizuno,et al.  State of the art in medical applications using non-thermal atmospheric pressure plasma , 2017 .

[146]  Xianren Zhang,et al.  Hidden Nanobubbles in Undersaturated Liquids. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[147]  V. R. Kumar,et al.  Onset of ice VII phase of liquid water: role of filamentation in stimulated Raman scattering. , 2015 .

[148]  G. Mesyats Ecton or electron avalanche from metal , 1995 .

[149]  S. Kulmala,et al.  Hot Electron-Induced Electrogenerated Chemiluminescence , 2011 .

[150]  Lorenz S. Cederbaum,et al.  Giant Intermolecular Decay and Fragmentation of Clusters , 1997 .

[151]  B. Ninham,et al.  Ion-Specific and Thermal Effects in the Stabilization of the Gas Nanobubble Phase in Bulk Aqueous Electrolyte Solutions. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[152]  A. Breskin Liquid Hole-Multipliers: A potential concept for large single-phase noble-liquid TPCs of rare events , 2013, 1303.4365.

[153]  A. Venter,et al.  Mechanisms of real-time, proximal sample processing during ambient ionization mass spectrometry. , 2014, Analytical chemistry.

[154]  G. Magnuson,et al.  Electron Ejection from Metals due to 1- to 10-keV Noble Gas Ion Bombardment. I. Polycrystalline Materials , 1963 .

[155]  D. Lohse,et al.  Surface nanobubbles nucleate microdroplets. , 2014, Physical review letters.

[156]  H. Winter Scattering of atoms and ions from insulator surfaces , 2000 .

[157]  B. Locke,et al.  Analysis and Review of Chemical Reactions and Transport Processes in Pulsed Electrical Discharge Plasma Formed Directly in Liquid Water , 2012, Plasma Chemistry and Plasma Processing.

[158]  P. Attard The stability of nanobubbles , 2013 .

[159]  S. Nihonyanagi,et al.  Partially Hydrated Electrons at the Air/Water Interface Observed by UV-Excited Time-Resolved Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy. , 2016, Journal of the American Chemical Society.

[160]  A. Denat,et al.  Electron multiplication in liquid cyclohexane and propane , 1991 .

[161]  Shu Liu,et al.  Identification of ROS Produced by Nanobubbles and Their Positive and Negative Effects on Vegetable Seed Germination. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[162]  P. Ambrico,et al.  LIF and fast imaging plasma jet characterization relevant for NTP biomedical applications , 2014 .

[163]  A. Rousseau,et al.  Charge and energy transferred from a plasma jet to liquid and dielectric surfaces , 2015 .

[164]  W. Schmidt Electronic Conduction Processes in Dielectric Liquids , 1984, IEEE Transactions on Electrical Insulation.

[165]  P. Lukeš,et al.  Penetration of Gas Discharge Through the Gas–Liquid Interface Into the Bulk Volume of Conductive Aqueous Solution , 2015, IEEE Transactions on Plasma Science.

[166]  Thomas Pertsch,et al.  Energy deposition dynamics of femtosecond pulses in water , 2014, 1405.5378.

[167]  Zhan Lin,et al.  Atmospheric plasma treatment of pre-electrospinning polymer solution: A feasible method to improve electrospinnability , 2011 .

[168]  C. Ohl,et al.  Total-internal-reflection-fluorescence microscopy for the study of nanobubble dynamics. , 2012, Physical review letters.

[169]  Jakob Woisetschläger,et al.  Neutron scattering of a floating heavy water bridge , 2009 .

[170]  Mooyoung Han,et al.  Micro and nanobubble technologies as a new horizon for water-treatment techniques: A review. , 2017, Advances in colloid and interface science.

[171]  M. Cambiaghi,et al.  Electron multiplication in liquid argon on a tip array , 1991 .

[172]  Z. Ogumi,et al.  Concentration of hydrogen nanobubbles in electrolyzed water. , 2006, Journal of colloid and interface science.

[173]  C. Pan,et al.  Molecular Dynamics Simulation of Thin Film Evaporation of Lennard-Jones Liquid , 2006 .

[174]  J. Conrad,et al.  Measurement of electron emission due to energetic ion bombardment in plasma source ion implantation , 1991 .

[175]  G. Hieftje,et al.  Visual observations of an atmospheric-pressure solution-cathode glow discharge. , 2012, Talanta.

[176]  J. Silberring,et al.  Plasma-based ambient ionization mass spectrometry in bioanalytical sciences. , 2016, Mass spectrometry reviews.

[177]  A. Vogel,et al.  Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery , 2016 .

[178]  Masayoshi Takahashi,et al.  Enhanced free-radical generation by shrinking microbubbles using a copper catalyst. , 2009, Chemosphere.

[179]  Z. Ogumi,et al.  Concentration determination of oxygen nanobubbles in electrolyzed water. , 2009, Journal of colloid and interface science.

[180]  F. Saija,et al.  Ab initio molecular dynamics study of an aqueous NaCl solution under an electric field. , 2016, Physical chemistry chemical physics : PCCP.

[181]  R. M. Sankaran,et al.  The effect of air on solvated electron chemistry at a plasma/liquid interface , 2015 .

[182]  R. Joshi,et al.  Streamer-Like Electrical Discharges in Water: Part I. Fundamental Mechanisms , 2013, Plasma Chemistry and Plasma Processing.

[183]  A review of recent theoretical and computational studies on pinned surface nanobubbles , 2017, 1711.07092.

[184]  M. Bernardi,et al.  Ab initio Electron Mobility and Polar Phonon Scattering in GaAs , 2016, 1608.03514.

[185]  Shu Liu,et al.  Oxidative Capacity of Nanobubbles and Its Effect on Seed Germination , 2016 .

[186]  Tadaaki Hirai,et al.  Impact ionization process in amorphous selenium , 1989 .

[187]  T. Szreder,et al.  Electron solvation dynamics and reactivity in ionic liquids observed by picosecond radiolysis techniques. , 2012, Faraday discussions.

[188]  Timothy S. Zwier,et al.  The Structure of Protonated Water Clusters , 2004, Science.

[189]  Herman W. Bandel Corona from Ice Points , 1951 .

[190]  A. Yu. Nikiforov,et al.  Plasma sputtering of water molecules from the liquid phase by low-energy ions: Molecular dynamics simulation , 2008 .

[191]  Y. Setsuhara Low-temperature atmospheric-pressure plasma sources for plasma medicine. , 2016, Archives of biochemistry and biophysics.

[192]  P. Geissler,et al.  Elucidating the mechanism of selective ion adsorption to the liquid water surface , 2012, Proceedings of the National Academy of Sciences.

[193]  Uzi Landman,et al.  Nanojets, electrospray, and ion field evaporation: molecular dynamics simulations and laboratory experiments. , 2008, The journal of physical chemistry. A.

[194]  N. Boussetta,et al.  Extraction of valuable biocompounds assisted by high voltage electrical discharges: A review , 2014 .

[195]  Gregory Fridman,et al.  Applied Plasma Medicine , 2008 .

[196]  R. Santra,et al.  Electronic decay in weakly bound heteroclusters: Energy transfer versus electron transfer , 2001 .

[197]  V. M. Atrazhev,et al.  The impact ionization and electrical breakdown strength for atomic and molecular liquids , 1991 .

[198]  Jen-Shih Chang,et al.  Research on the influence of conductivity to pulsed arc electrohydraulic discharge in water , 2014 .

[199]  Richard G. Forbes,et al.  Low-macroscopic-field electron emission from carbon films and other electrically nanostructured heterogeneous materials: hypotheses about emission mechanism ☆ , 2001 .

[200]  K. Trachenko,et al.  Between glass and gas: Thermodynamics of liquid matter , 2015 .

[201]  R. Hamers,et al.  Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. , 2013, Nature materials.

[202]  N. Yavorovsky,et al.  Generation of Active Oxidant Species by Pulsed Dielectric Barrier Discharge in Water-Air Mixtures , 2006 .

[203]  U. Bovensiepen,et al.  Ultrafast dynamics of electron localization and solvation in ice layers on Cu(111). , 2002, Physical review letters.

[204]  V. Pârvulescu,et al.  Degradation of pharmaceutical compounds in water by non-thermal plasma treatment. , 2015, Water research.

[205]  A. Bogaerts,et al.  The ion- and atom-induced secondary electron emission yield: numerical study for the effect of clean and dirty cathode surfaces , 2002 .

[206]  Michel Meunier,et al.  Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation. , 2012, Nano letters.

[207]  D. E. Cagliostro,et al.  Wettability of transition metal oxide surfaces , 1998 .

[208]  Ahmed Khacef,et al.  Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment , 2017 .

[209]  Junhao Li,et al.  Partial discharge characteristics over differently aged oil/pressboard interfaces , 2009, IEEE Transactions on Dielectrics and Electrical Insulation.

[210]  S. Oshita,et al.  Evidence of the existence and the stability of nano-bubbles in water , 2010 .

[211]  V. V. Brazhkin,et al.  The phonon theory of liquid thermodynamics , 2012, Scientific Reports.

[212]  B. Ridley Lucky-drift mechanism for impact ionisation in semiconductors , 1983 .

[213]  A. Lyubartsev,et al.  Molecular dynamics simulations of water clusters with ions at atmospheric conditions , 2002 .

[214]  Anode initiated impulse breakdown in water: the dependence on pulse rise time for nanosecond and sub-nanosecond pulses and initiation mechanism based on electrostriction , 2015, 1506.08123.

[215]  M. Shneider Liquid Dielectrics in an Inhomogeneous Pulsed Electric Field , 2016 .

[216]  Ho-Suk Choi,et al.  PROPERTIES OF ATMOSPHERIC PRESSURE GLOW DISCHARGE WITH LIQUID ELECTROLYTE CATHODE , 2007 .

[217]  The effect of different types of inclusions on PE cable life , 1988 .

[218]  Thierry Belmonte,et al.  Interaction of discharges with electrode surfaces in dielectric liquids: application to nanoparticle synthesis , 2014 .

[219]  M. Pekker,et al.  Investigation of positive and negative modes of nanosecond pulsed discharge in water and electrostriction model of initiation , 2013, 1305.6335.

[220]  Christophe Leys,et al.  Non-thermal plasmas in and in contact with liquids , 2009 .

[221]  M. Hori,et al.  Plasma agriculture , 2012 .

[222]  Philip Ball,et al.  Water: Water — an enduring mystery , 2008, Nature.

[223]  Stephanie E. Sanders,et al.  Water at surfaces with tunable surface chemistries , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[224]  W. C. Fonteno,et al.  Fertilization of Radishes, Tomatoes, and Marigolds Using a Large-Volume Atmospheric Glow Discharge , 2014, Plasma Chemistry and Plasma Processing.

[225]  K. Trachenko,et al.  Collective modes and thermodynamics of the liquid state , 2015, Reports on progress in physics. Physical Society.

[226]  D. Zhukhovitskii Effective surface tension for capillary fluctuations at the vapor-liquid interface , 2010 .

[227]  P. Tarazona,et al.  The intrinsic structure of the water surface. , 2006, The Journal of chemical physics.

[228]  Xiaohao Wang,et al.  Development of dielectric-barrier-discharge ionization , 2015, Analytical and Bioanalytical Chemistry.

[229]  M. Kushner,et al.  Effect of inhomogeneities on streamer propagation: I. Intersection with isolated bubbles and particles , 2009 .

[230]  F. Fernández,et al.  Ambient sampling/ionization mass spectrometry: applications and current trends. , 2011, Analytical chemistry.

[231]  S. Horikoshi,et al.  In-liquid plasma: a novel tool in the fabrication of nanomaterials and in the treatment of wastewaters , 2017 .

[232]  P. Mezei,et al.  The investigation of an abnormal electrolyte cathode atmospheric glow discharge (ELCAD) , 2006 .

[233]  Xiaoli Zhan,et al.  Hydrogen production from alcohols and ethers via cold plasma: A review , 2014 .

[234]  S. Kasap,et al.  Lucky-drift model for impact ionization in amorphous semiconductors , 2009 .

[235]  A. Wexler,et al.  A floating water bridge produces water with excess charge , 2016 .

[236]  C. E. López-Plascencia,et al.  Reactive force field study of the molecular structure of water under thermal and electric effects: Water splitting phenomenon , 2017 .

[237]  R. W. Fessenden ESR of Reacting Radicals , 2014 .

[238]  K. Trachenko,et al.  Duality of liquids , 2013, Scientific Reports.

[239]  Lin Zhao,et al.  Changes of Water Hydrogen Bond Network with Different Externalities , 2015, International journal of molecular sciences.

[240]  J. Foster,et al.  Towards understanding plasma formation in liquid water via single bubble studies , 2014 .

[241]  Ashutosh Agarwal,et al.  Principle and applications of microbubble and nanobubble technology for water treatment. , 2011, Chemosphere.

[242]  Jun Hu,et al.  Degassing and temperature effects on the formation of nanobubbles at the mica/water interface. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[243]  M. Brenner,et al.  Dynamic equilibrium mechanism for surface nanobubble stabilization. , 2008, Physical review letters.

[244]  W. A. Wenzel,et al.  Studies of electron avalanche behavior in liquid argon , 2001 .

[245]  O. Janoušková,et al.  The persistent microbicidal effect in water exposed to the corona discharge. , 2012, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics.

[246]  S. Ou,et al.  Spherical monovalent ions at aqueous liquid-vapor interfaces: interfacial stability and induced interface fluctuations. , 2013, The journal of physical chemistry. B.

[247]  A. Venter,et al.  Ambient ionization mass spectrometry: real-time, proximal sample processing and ionization , 2017 .

[248]  M. Parrinello,et al.  The nature of the hydrated excess proton in water , 1999, Nature.

[249]  I. P. Zvyagin,et al.  Lucky-drift model for avalanche multiplication in amorphous semiconductors , 2004 .

[250]  Bo Jiang,et al.  Review on electrical discharge plasma technology for wastewater remediation , 2014 .

[251]  Rama Govindarajan,et al.  Dynamics of an initially spherical bubble rising in quiescent liquid , 2015, Nature Communications.

[252]  Temporal and spectral disentanglement of laser-driven electron tunneling emission from a solid , 2014, 1405.0609.

[253]  Mounir Laroussi,et al.  Ignition phase and steady-state structures of a non-thermal air plasma , 2003 .

[254]  J. Naganoma,et al.  Measurements of proportional scintillation and electron multiplication in liquid xenon using thin wires , 2014, 1408.6206.

[255]  John Lekner,et al.  Theory of reflection , 1987 .

[256]  A. Vogel,et al.  Wavelength Dependence of Nanosecond IR Laser-Induced Breakdown in Water: Evidence for Multiphoton Initiation via an Intermediate State , 2015 .

[257]  V. M. Donnelly,et al.  Simulation of a direct current microplasma discharge in helium at atmospheric pressure , 2006 .

[258]  J. Delhommelle,et al.  Thermodynamics of phase coexistence and metal-nonmetal transition in mercury: assessment of effective potentials via expanded Wang-Landau simulations. , 2014, The journal of physical chemistry. B.

[259]  H. Allen,et al.  Bridging the gap between microscopic and macroscopic views of air/aqueous salt interfaces , 2013 .

[260]  G. Zhang,et al.  Influence of thermal degradation on surface discharge characteristics for oil-polypropylene insulation , 2015, IEEE Transactions on Dielectrics and Electrical Insulation.

[261]  S. Xiao,et al.  Aspects of Plasma in Water: Streamer Physics and Applications , 2009 .

[262]  P. Bruggeman,et al.  Assessment of Potential Applications of Plasma with Liquid Water , 2013 .

[263]  T. J. Lewis,et al.  Breakdown initiating mechanisms at electrode interfaces in liquids , 2003 .

[264]  N. Bonifaci,et al.  Ionization phenomenon in high-density gaseous and liquid argon in corona discharge experiments , 1997 .

[265]  B. Gelchinski,et al.  Analysis of the electronic structure of liquid rubidium by the methods of ab initio molecular dynamics, linear muffin-tin orbitals and recursion , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[266]  M.J. Kushner,et al.  Streamer Branching: The Role of Inhomogeneities and Bubbles , 2008, IEEE Transactions on Plasma Science.

[267]  N. Hindley Random phase model of amorphous semiconductors II. Hot electrons , 1970 .

[268]  M. Drancourt Detection of microorganisms in blood specimens using matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a review. , 2010, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[269]  C. Bain,et al.  Hydrated electrons at the water/air interface. , 2010, Journal of the American Chemical Society.

[270]  S. H. Park,et al.  Preparation of nonaggregated silver nanoparticles by the liquid phase plasma reduction method , 2013 .

[271]  H. Ara'ujo,et al.  Liquid noble gas detectors for low energy particle physics , 2012, 1207.2292.

[272]  Kazunari Ohgaki,et al.  Physicochemical approach to nanobubble solutions , 2010 .

[273]  D. Lohse,et al.  Surface nanobubbles and nanodroplets , 2015 .

[274]  T. Mieno Plasma Science and Technology - Progress in Physical States and Chemical Reactions , 2016 .

[275]  M. Fraga,et al.  Observation of electron multiplication in liquid xenon with a microstrip plate , 1995 .

[276]  Yi Liu,et al.  Subsonic streamers in water: initiation, propagation and morphology , 2017 .

[277]  D. Weston Ambient ionization mass spectrometry: current understanding of mechanistic theory; analytical performance and application areas. , 2010, The Analyst.

[278]  A. Pasquarello,et al.  Structural, Dynamical, and Electronic Properties of Liquid Water: A Hybrid Functional Study. , 2016, The journal of physical chemistry. B.

[279]  K. Keener,et al.  Cold plasma: background, applications and current trends , 2017 .

[280]  Xuechen Li,et al.  Investigation on the Micro-Discharge Characteristics of Dielectric Barrier Discharge in a Needle-Plate Geometry , 2011 .

[281]  R. M. Namin,et al.  Dynamics of a vertical water bridge , 2013, 1309.2222.

[282]  J. Hernández-Ávila,et al.  Hot electron phenomena in liquid and gaseous Ar and N/sub 2/ in divergent electric fields , 1994 .

[283]  D. Hamon,et al.  Effects of pH, surface finish and thermal treatment on the corrosion of AlFeNi aluminum alloy. Characterization of oxide layers , 2015 .

[284]  M. Suchomel,et al.  Reply to comment on ‘Molecular arrangement in water: random but not quite’ , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[285]  R. Baragiola,et al.  Z1dependence of ion-induced electron emission from aluminum , 1980 .

[286]  E. Schamiloglu,et al.  Microbubble-based model analysis of liquid breakdown initiation by a submicrosecond pulse , 2005 .

[287]  B. Schwartz,et al.  Short-Range Electron Correlation Stabilizes Noncavity Solvation of the Hydrated Electron. , 2016, Journal of chemical theory and computation.

[288]  Feliciano Giustino,et al.  Fröhlich Electron-Phonon Vertex from First Principles. , 2015, Physical review letters.

[289]  I. Nezbeda,et al.  Aqueous electrolyte surfaces in strong electric fields: molecular insight into nanoscale jets and bridges , 2015 .

[290]  A. Piel Definition of the Plasma State , 2010 .

[291]  Z. Barkay,et al.  Pulsed discharge production of nano- and microparticles in ethanol and their characterization , 2005 .

[292]  Ronny Brandenburg,et al.  Foundations of atmospheric pressure non-equilibrium plasmas , 2017 .

[293]  Qiang Chen,et al.  A review of plasma-liquid interactions for nanomaterial synthesis , 2015 .

[294]  J. Franzke,et al.  Dielectric barrier discharges applied for soft ionization and their mechanism. , 2017, Analytica chimica acta.

[295]  Ion clustering in aqueous salt solutions near the liquid/vapor interface , 2016, 1603.07106.

[296]  F. Tantussi,et al.  Hot electrons in water: injection and ponderomotive acceleration by means of plasmonic nanoelectrodes , 2017, Light: Science & Applications.

[297]  P. Lukeš,et al.  Erosion of needle electrodes in pulsed corona discharge in water , 2006 .

[298]  R. Atkin,et al.  Surface Nanobubbles in Nonaqueous Media: Looking for Nanobubbles in DMSO, Formamide, Propylene Carbonate, Ethylammonium Nitrate, and Propylammonium Nitrate. , 2015, ACS nano.

[299]  Zhenli Zhu,et al.  Flowing and Nonflowing Liquid Electrode Discharge Microplasma for Metal Ion Detection by Optical Emission Spectrometry , 2014 .

[300]  F. Freund,et al.  A Quasi-Elastic Neutron Scattering Study of the Dynamics of Electrically Constrained Water. , 2015, The journal of physical chemistry. B.

[301]  Jing Liu,et al.  Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area , 2013 .

[302]  I. V. Lisitsyn,et al.  Thermal processes in a streamer discharge in water , 1999 .

[303]  S. Bonev,et al.  Structural and electronic properties of dense liquid and amorphous nitrogen , 2011 .

[304]  Jean-Pierre Boeuf,et al.  Dynamics of a guided streamer (‘plasma bullet’) in a helium jet in air at atmospheric pressure , 2013 .

[305]  Bin Chen,et al.  Structure and dynamics of the aqueous liquid-vapor interface: a comprehensive particle-based simulation study. , 2006, The journal of physical chemistry. B.

[306]  M. Calandra,et al.  Wannier interpolation of the electron-phonon matrix elements in polar semiconductors: Polar-optical coupling in GaAs , 2015, 1508.06172.

[307]  David T. Limmer,et al.  Water at Interfaces. , 2016, Chemical reviews.

[308]  Percolation breakdown of amorphous semiconductors , 2006 .

[309]  C. Sacchi Laser-induced electric breakdown in water , 1991 .

[310]  Eric Andrieu,et al.  Influence of oxide films on primary water stress corrosion cracking initiation of alloy 600 , 2006 .

[311]  P. Rossky,et al.  Theoretical studies of spectroscopy and dynamics of hydrated electrons. , 2012, Chemical reviews.

[312]  T. Kaneko,et al.  Ion irradiation effects on ionic liquids interfaced with rf discharge plasmas , 2007 .

[313]  Ravindra P. Joshi,et al.  Streamers in water and other dielectric liquids , 2008 .

[314]  Mark J. Kushner,et al.  Air plasma treatment of liquid covered tissue: long timescale chemistry , 2016 .

[315]  B. Schwartz,et al.  Free Energies of Cavity and Noncavity Hydrated Electrons Near the Instantaneous Air/Water Interface. , 2016, The journal of physical chemistry letters.

[316]  P. Walsh,et al.  Experimental results in amorphous semiconductor switching behavior , 1970 .

[317]  A. Vogel,et al.  Laser-induced plasma formation in water at nanosecond to femtosecond time scales: Calculation of thresholds, absorption coefficients, and energy density , 1999 .

[318]  Alexander M. Bradshaw,et al.  A hitherto unrecognized source of low-energy electrons in water , 2010 .

[319]  A. Beroual,et al.  Fractal analysis of creeping discharge patterns propagating at solid/liquid interfaces: influence of the nature and geometry of solid insulators , 2006 .

[320]  Karl Gatterer,et al.  Experiments in a floating water bridge , 2008 .

[321]  J. Foster Plasma-based water purification: Challenges and prospects for the future , 2017 .

[322]  D. Lohse,et al.  A deliberation on nanobubbles at surfaces and in bulk. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.