Imprecision arises naturally in the context of computer models and their relation to reality. An imprecise treatment of general computer models is presented, illustrated with an analysis of a complex galaxy formation simulation known as Galform. The analysis involves several di!erent types of uncertainty, one of which (the Model Discrepancy) comes directly from expert elicitation regarding the deficiencies of the model. The Model Discrepancy is therefore treated within an Imprecise framework to reflect more accurately the beliefs of the expert concerning the discrepancy between the model and reality. Due to the conceptual complexity and computationally intensive nature of such a Bayesian imprecise uncertainty analysis, Bayes Linear Methodology is employed which requires consideration of only expectations and variances of all uncertain quantities. Therefore incorporating an Imprecise treatment within a Bayes Linear analysis is shown to be relatively straightforward. The impact of an imprecise assessment on the input space of the model is determined through the use of an Implausibility measure.
[1]
A. Seheult,et al.
Pressure Matching for Hydrocarbon Reservoirs: A Case Study in the Use of Bayes Linear Strategies for Large Computer Experiments
,
1997
.
[2]
Oxford,et al.
Breaking the hierarchy of galaxy formation
,
2005,
astro-ph/0511338.
[3]
B. M. Golam Kibria.
Bayes Linear Statistics: Theory and Methods
,
2008
.
[4]
Thomas J. Santner,et al.
The Design and Analysis of Computer Experiments
,
2003,
Springer Series in Statistics.
[5]
A. O'Hagan,et al.
Bayesian calibration of computer models
,
2001
.
[6]
Michael Goldstein,et al.
Reified Bayesian modelling and inference for physical systems
,
2009
.