Rational approximations of trigonometric matrices with application to second-order systems of differential equations

[1]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[2]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[3]  R. Varga On Higher Order Stable Implicit Methods for Solving Parabolic Partial Differential Equations , 1961 .

[4]  Richard S. Varga,et al.  DISCRETIZATION ERRORS FOR WELL-SET CAUCHY PROBLEMS.I., , 1965 .

[5]  R. Varga,et al.  Chebyshev rational approximations to e−x in [0, +∞) and applications to heat-conduction problems , 1969 .

[6]  Ralph A. Willoughby,et al.  EFFICIENT INTEGRATION METHODS FOR STIFF SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS , 1970 .

[7]  W. E. Culham,et al.  A comparison of Crank-Nicolson and Chebyshev rational methods for numerically solving linear parabolic equations , 1972 .

[8]  B. L. Ehle A-Stable Methods and Padé Approximations to the Exponential , 1973 .

[9]  Samuel W. Key,et al.  Transient shell response by numerical time integration , 1973 .

[10]  L. Morino,et al.  Optimal Predictor-Corrector Method for Systems of Second-Order Differential Equations , 1974 .

[11]  Syvert P. Nørsett,et al.  One-step methods of hermite type for numerical integration of stiff systems , 1974 .

[12]  Zdenek Picel,et al.  Two-parameter, arbitrary order, exponential approximations for stiff equations , 1975 .

[13]  S. P. Nørsett C-Polynomials for rational approximation to the exponential function , 1975 .

[14]  Vidar Thomée,et al.  Single step Galerkin approximations for parabolic problems , 1977 .

[15]  H. Saunders Book Reviews : NUMERICAL METHODS IN FINITE ELEMENT ANALYSIS K.-J. Bathe and E.L. Wilson Prentice-Hall, Inc, Englewood Cliffs, NJ , 1978 .