Topological order and absence of band insulators at integer filling in non-symmorphic crystals

A crystal is a band insulator if the energy bands are filled with electrons. Partially filled bands result in a metal, or sometimes a Mott insulator when interactions are strong. A study now shows that for many crystalline structures, the Mott insulator is the only possible insulating state, even for filled bands.

[1]  B. Shastry,et al.  Exact ground state of a quantum mechanical antiferromagnet , 1981 .

[2]  A. Vishwanath,et al.  Featureless and nonfractionalized Mott insulators on the honeycomb lattice at 1/2 site filling , 2012, Proceedings of the National Academy of Sciences.

[3]  S. Capponi,et al.  Effective theory of magnetization plateaux in the Shastry-Sutherland lattice. , 2008, Physical review letters.

[4]  C. Herring Character tables for two space groups , 1942 .

[5]  C. Batista,et al.  Magnetostriction and magnetic texture to 100.75 Tesla in frustrated SrCu2(BO3)2 , 2012, Proceedings of the National Academy of Sciences.

[6]  P. Sengupta,et al.  Fractalization drives crystalline states in a frustrated spin system , 2007, Proceedings of the National Academy of Sciences.

[7]  N. Mermin,et al.  Electronic Level Degeneracy in Non-Symmorphic Periodic or Aperiodic Crystals , 1997 .

[8]  C. Herring Effect of Time-Reversal Symmetry on Energy Bands of Crystals , 1937 .

[9]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[10]  F. Mila,et al.  Theory of magnetization plateaux in the Shastry-Sutherland model. , 2008, Physical review letters.

[11]  H. Kageyama,et al.  Magnetic Superstructure in the Two-Dimensional Quantum Antiferromagnet SrCu2(BO3)2 , 2002, Science.

[12]  N. David Mermin,et al.  The space groups of icosahedral quasicrystals and cubic, orthorhombic, monoclinic, and triclinic crystals , 1992 .

[13]  N. Mermin,et al.  Screw rotations and glide mirrors: crystallography in Fourier space. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[14]  M. B. Hastings,et al.  Lieb-Schultz-Mattis in higher dimensions , 2004 .

[15]  Masaki Oshikawa,et al.  Magnetization Plateaus in Spin Chains: “Haldane Gap” for Half-Integer Spins , 1997 .

[16]  L. Balents,et al.  Fractionalization in an easy-axis Kagome antiferromagnet , 2002 .

[17]  D. C. Wright,et al.  The space groups of axial crystals and quasicrystals , 1991 .

[18]  S. Kivelson,et al.  Fragile Mott insulators. , 2010, Physical review letters.

[19]  R. Roy Space group symmetries and low lying excitations of many-body systems at integer fillings , 2012, 1212.2944.

[20]  Xiao-Gang Wen,et al.  Symmetry protected topological orders and the group cohomology of their symmetry group , 2011, 1106.4772.

[21]  J. Zak,et al.  CONNECTIVITY OF ENERGY BANDS IN CRYSTALS , 1999 .

[22]  R. Resta,et al.  Quantum-Mechanical Position Operator in Extended Systems , 1998 .

[23]  Walter Kohn,et al.  THEORY OF THE INSULATING STATE , 1964 .

[24]  H. Kageyama,et al.  1/3 Magnetization Plateau in SrCu2(BO3)2--Stripe Order of Excited Triplets , 2000 .

[25]  Raffaele Resta,et al.  MACROSCOPIC POLARIZATION IN CRYSTALLINE DIELECTRICS : THE GEOMETRIC PHASE APPROACH , 1994 .

[26]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[27]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[28]  E. Lieb,et al.  Two Soluble Models of an Antiferromagnetic Chain , 1961 .

[29]  R. Resta Why are insulators insulating and metals conducting , 2002 .