Identifying quantitative operation principles in metabolic pathways: a systematic method for searching feasible enzyme activity patterns leading to cellular adaptive responses

[1]  C. Floudas Deterministic Global Optimization: Theory, Methods and Applications , 2010 .

[2]  Christodoulos A. Floudas,et al.  Deterministic global optimization - theory, methods and applications , 2010, Nonconvex optimization and its applications.

[3]  I. Chou,et al.  Recent developments in parameter estimation and structure identification of biochemical and genomic systems. , 2009, Mathematical biosciences.

[4]  E. Koonin Darwinian evolution in the light of genomics , 2008, Nucleic acids research.

[5]  Eberhard O. Voit,et al.  System estimation from metabolic time-series data , 2008, Bioinform..

[6]  Enrique Herrero,et al.  Comprehensive Transcriptional Analysis of the Oxidative Response in Yeast* ♦ , 2008, Journal of Biological Chemistry.

[7]  Michael A Savageau,et al.  Hysteretic and graded responses in bacterial two‐component signal transduction , 2008, Molecular microbiology.

[8]  Rui Alves,et al.  Integrating Bioinformatics and Computational Biology: Perspectives and Possibilities for In Silico Network Reconstruction in Molecular Systems Biology , 2008 .

[9]  Eberhard O Voit,et al.  Yield optimization of regulated metabolic systems using deterministic branch‐and‐reduce methods , 2008, Biotechnology and bioengineering.

[10]  Ignacio E. Grossmann,et al.  An improved piecewise outer-approximation algorithm for the global optimization of MINLP models involving concave and bilinear terms , 2008, Comput. Chem. Eng..

[11]  A. Sorribas,et al.  Mathematical formalisms based on approximated kinetic representations for modeling genetic and metabolic pathways , 2008, Biotechnology & genetic engineering reviews.

[12]  Julio Vera,et al.  Detection of potential enzyme targets by metabolic modelling and optimization: Application to a simple enzymopathy , 2007, Bioinform..

[13]  Pio A. Aguirre,et al.  Global Optimal Structures of Heat Exchanger Networks by Piecewise Relaxation , 2007 .

[14]  Michael A Savageau,et al.  Signalling network with a bistable hysteretic switch controls developmental activation of the σF transcription factor in Bacillus subtilis , 2006, Molecular microbiology.

[15]  A. Sorribas,et al.  Use of physiological constraints to identify quantitative design principles for gene expression in yeast adaptation to heat shock , 2006, BMC Bioinformatics.

[16]  Michael A Savageau,et al.  Evolution of enzymes in a series is driven by dissimilar functional demands , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Ignacio E. Grossmann,et al.  Logic-based outer approximation for globally optimal synthesis of process networks , 2005, Comput. Chem. Eng..

[18]  E. Klipp,et al.  Integrative model of the response of yeast to osmotic shock , 2005, Nature Biotechnology.

[19]  Michael A Savageau,et al.  Evidence of selection for low cognate amino acid bias in amino acid biosynthetic enzymes , 2005, Molecular microbiology.

[20]  Eberhard O. Voit,et al.  Simulation and validation of modelled sphingolipid metabolism in Saccharomyces cerevisiae , 2005, Nature.

[21]  A. Sorribas,et al.  Predictive reconstruction of the mitochondrial iron‐sulfur cluster assembly metabolism. II. Role of glutaredoxin Grx5 , 2004, Proteins.

[22]  Enrique Herrero,et al.  Predictive reconstruction of the mitochondrial iron–sulfur cluster assembly metabolism: I. The role of the protein pair ferredoxin–ferredoxin reductase (Yah1–Arh1) , 2004, Proteins.

[23]  Ignacio E. Grossmann,et al.  Retrospective on optimization , 2004, Comput. Chem. Eng..

[24]  Michael A Savageau,et al.  Quantitative evolutionary design of glucose 6-phosphate dehydrogenase expression in human erythrocytes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Marta Cascante,et al.  Multicriteria optimization of biochemical systems by linear programming: application to production of ethanol by Saccharomyces cerevisiae. , 2003, Biotechnology and bioengineering.

[26]  Alberto Marín-Sanguino,et al.  Optimization of biochemical systems by linear programming and general mass action model representations. , 2003, Mathematical biosciences.

[27]  Rui Alves,et al.  Comparative analysis of prototype two‐component systems with either bifunctional or monofunctional sensors: differences in molecular structure and physiological function , 2003, Molecular microbiology.

[28]  E. Voit Design principles and operating principles: the yin and yang of optimal functioning. , 2003, Mathematical biosciences.

[29]  Manuel Cánovas,et al.  Modeling, optimization and experimental assessment of continuous L-(-)-carnitine production by Escherichia coli cultures. , 2002, Biotechnology and bioengineering.

[30]  E O Voit,et al.  Assessment of effects of experimental imprecision on optimized biochemical systems. , 2001, Biotechnology and bioengineering.

[31]  M A Savageau,et al.  Irreversibility in unbranched pathways: preferred positions based on regulatory considerations. , 2001, Biophysical journal.

[32]  E. Lander,et al.  Remodeling of yeast genome expression in response to environmental changes. , 2001, Molecular biology of the cell.

[33]  D. Botstein,et al.  Genomic expression programs in the response of yeast cells to environmental changes. , 2000, Molecular biology of the cell.

[34]  E. O. Voit,et al.  Biochemical systems analysis of genome-wide expression data , 2000, Bioinform..

[35]  Eberhard O. Voit,et al.  Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists , 2000 .

[36]  A Sorribas,et al.  Analysis and prediction of the effect of uncertain boundary values in modeling a metabolic pathway. , 2000, Biotechnology and bioengineering.

[37]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[38]  A Sorribas,et al.  Mathematical models of purine metabolism in man. , 1998, Mathematical biosciences.

[39]  F. Chaplen,et al.  Developments in metabolic engineering. , 1997, Current opinion in biotechnology.

[40]  W. S. Hlavacek,et al.  Completely uncoupled and perfectly coupled gene expression in repressible systems. , 1997, Journal of molecular biology.

[41]  W. S. Hlavacek,et al.  Rules for coupled expression of regulator and effector genes in inducible circuits. , 1996, Journal of molecular biology.

[42]  M. Cascante,et al.  Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: model definition and nomenclature. , 1995, Mathematical biosciences.

[43]  R. Raman,et al.  Modelling and computational techniques for logic based integer programming , 1994 .

[44]  E O Voit,et al.  Optimization in integrated biochemical systems , 1992, Biotechnology and bioengineering.

[45]  Lawrence M. Seiford,et al.  Recent developments in dea : the mathematical programming approach to frontier analysis , 1990 .

[46]  J E Bailey,et al.  Strategies and Challenges in Metabolic Engineering a , 1990, Annals of the New York Academy of Sciences.

[47]  Biochemical systems analysis: A study of function and design in molecular biology , 1978 .

[48]  Michael A. Savageau,et al.  Significance of autogenously regulated and constitutive synthesis of regulatory proteins in repressible biosynthetic systems , 1975, Nature.

[49]  M. Savageau Comparison of classical and autogenous systems of regulation in inducible operons , 1974, Nature.

[50]  Michael A. Savageau,et al.  Optimal design of feedback control by inhibition , 1974, Journal of Molecular Evolution.

[51]  M. Savageau Biochemical systems analysis. III. Dynamic solutions using a power-law approximation , 1970 .

[52]  M. Savageau Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. , 1969, Journal of theoretical biology.

[53]  A. Bennett The Origin of Species by means of Natural Selection; or the Preservation of Favoured Races in the Struggle for Life , 1872, Nature.

[54]  C. Darwin,et al.  On the Tendency of Species to form Varieties; and on the Perpetuation of Varieties and Species by Natural Means of Selection , 1858 .

[55]  Eberhard O Voit,et al.  A systems-theoretical framework for health and disease: inflammation and preconditioning from an abstract modeling point of view. , 2009, Mathematical biosciences.

[56]  Mark A. J. Roberts,et al.  BMC Systems Biology , 2009 .

[57]  J. Scott Turner,et al.  The Tinkerer's Accomplice: How Design Emerges from Life Itself , 2007 .

[58]  D Kell,et al.  Making cells work--metabolic engineering for everyone. , 1997, Trends in biotechnology.

[59]  M. Savageau Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions. , 1969, Journal of theoretical biology.

[60]  W. G. Madow,et al.  Methods and applications , 1953 .

[61]  Eberhard O Voit,et al.  Theoretical Biology and Medical Modelling , 2022 .

[62]  Eberhard O Voit,et al.  Theoretical Biology and Medical Modelling Identification of Metabolic System Parameters Using Global Optimization Methods , 2022 .