Life and Death in Markov Deterministic Tabled OL Systems

We consider Markov DT0L systems, that is, DT0L systems with a Markov chain control. Our main concern is life and death in such systems. We prove that expected cell-distribution and expected growth equivalence are decidable, that the question of whether or not a Markov DT0L system generates a dead word is equivalent to an open question for Z-rational series, and that it is decidable whether or not a given word survives in a given propagating Markov DT0L system.

[1]  Arto Salomaa,et al.  Automata-Theoretic Aspects of Formal Power Series , 1978, Texts and Monographs in Computer Science.

[2]  W. Pollul,et al.  Characterization of growth in deterministic Lindenmayer systems , 1975 .

[3]  Eugene S. Santos A Note on Probabilistic Grammars , 1974, Inf. Control..

[4]  Takashi Yokomori,et al.  Stochastic Characterizations of EOL Languages , 1980, Inf. Control..

[5]  A. Lindenmayer Mathematical models for cellular interactions in development. I. Filaments with one-sided inputs. , 1968, Journal of theoretical biology.

[6]  Eugene S. Santos Regular Probabilistic Languages , 1973, Inf. Control..

[7]  Grzegorz Rozenberg,et al.  Developmental systems and languages , 1972, STOC.

[8]  H. D. Miller,et al.  The Theory Of Stochastic Processes , 1977, The Mathematical Gazette.

[9]  Robert Knast,et al.  Finite-State Probabilistic Languages , 1972, Inf. Control..

[10]  Eugene S. Santos Probabilistic Grammars and Automata , 1972, Inf. Control..

[11]  Aristid Lindenmayer,et al.  Mathematical Models for Cellular Interactions in Development , 1968 .

[12]  Arto Salomaa,et al.  Integral Sequential Word Functions and Growth Equivalence of Lindenmayer Systems , 1973, Inf. Control..

[13]  Walter J. Savitch,et al.  Growth Functions of Stochastic Lindenmayer Systems , 1980, Inf. Control..

[14]  William Feller,et al.  An Introduction to Probability Theory and Its Applications. I , 1951, The Mathematical Gazette.

[15]  A. Lindenmayer Mathematical models for cellular interactions in development. II. Simple and branching filaments with two-sided inputs. , 1968, Journal of theoretical biology.

[16]  Arto Salomaa,et al.  Probabilistic and Weighted Grammars , 1969, Inf. Control..

[17]  Grzegorz Rozenberg,et al.  The Equivalence Problem for Deterministic T0L-Systems is Undecidable , 1972, Inf. Process. Lett..

[18]  Grzegorz Rozenberg,et al.  The mathematical theory of L systems , 1980 .