The photon pipeline revisited

With the development of real-time ray tracing in recent years, it is now very interesting to ask if real-time performance can be achieved for high-quality rendering algorithms based on ray tracing. In this paper, we propose a pipelined architecture to implement reverse photon mapping. Our architecture can use real-time ray tracing to generate photon points and camera points, so the main challenge is how to implement the gathering phase that computes the final image. Traditionally, the gathering phase of photon mapping has only allowed coarse-grain parallelism, and this situation has been a source of inefficiency, cache thrashing, and limited throughput. To avail fine-grain pipelining and data parallelism, we arrange computations so that photons can be processed independently, similar to the way that triangles are efficiently processed in traditional real-time graphics hardware. We employ several techniques to improve cache behavior and to reduce communication overhead. Simulations show that the bandwidth requirements of this architecture are within the capacity of current and future hardware, and this suggests that photon mapping may be a good choice for real-time performance in the future.

[1]  Yves D. Willems,et al.  Bi-directional path tracing , 1993 .

[2]  Anselmo Lastra,et al.  Reordering for cache conscious photon mapping , 2005, Graphics Interface.

[3]  Henry Fuchs,et al.  A sorting classification of parallel rendering , 2008, SIGGRAPH 2008.

[4]  Henrik Wann Jensen,et al.  Global Illumination using Photon Maps , 1996, Rendering Techniques.

[5]  Donald P. Greenberg,et al.  Global Illumination via Density Estimation , 1995, Rendering Techniques.

[6]  Paul S. Heckbert Adaptive radiosity textures for bidirectional ray tracing , 1990, SIGGRAPH.

[7]  Shawn Singh The photon pipeline , 2006, GRAPHITE '06.

[8]  Ingo Wald,et al.  Realtime ray tracing and interactive global illumination , 2004, Ausgezeichnete Informatikdissertationen.

[9]  H. Jensen Realistic Image Synthesis Using Photon Mapping , 2001 .

[10]  Kellogg S. Booth,et al.  Heuristics for ray tracing using space subdivision , 1990, The Visual Computer.

[11]  Tomas Akenine-Möller,et al.  Real-Time Rendering, Second Edition , 2002 .

[12]  Mathias Paulin,et al.  Scalable photon splatting for global illumination , 2003, GRAPHITE '03.

[13]  Philipp Slusallek,et al.  RPU: a programmable ray processing unit for realtime ray tracing , 2005, ACM Trans. Graph..

[14]  Tomas Akenine-Möller,et al.  Real-time rendering , 1997 .

[15]  Philipp Slusallek,et al.  Interactive Global Illumination using Fast Ray Tracing , 2002, Rendering Techniques.

[16]  S. Collins,et al.  Adaptive Splatting for Specular toDiffuse Light Transport (also inProceedings of the 5th EuroGraphics Workshop on Rendering,1994). , 1994 .

[17]  E. Brunvand,et al.  Estimating Performance of a Ray-Tracing ASIC Design , 2006, 2006 IEEE Symposium on Interactive Ray Tracing.

[18]  Erik Reinhard,et al.  Overview of Parallel Photo-realistic Graphics , 1998, Eurographics.

[19]  Bent Dalgaard Larsen,et al.  Simulating Photon Mapping for Real-time Applications , 2004, Rendering Techniques.

[20]  Vlastimil Havran,et al.  Heuristic ray shooting algorithms , 2000 .

[21]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[22]  Per H. Christensen Faster Photon Map Global Illumination , 1999, J. Graphics, GPU, & Game Tools.

[23]  O. Abert,et al.  Direct and Fast Ray Tracing of NURBS Surfaces , 2006, 2006 IEEE Symposium on Interactive Ray Tracing.

[24]  Holly E. Rushmeier,et al.  A progressive multi-pass method for global illumination , 1991, SIGGRAPH.

[25]  Philipp Slusallek,et al.  State of the Art in Interactive Ray Tracing , 2001, Eurographics.

[26]  Ian Abramson On Bandwidth Variation in Kernel Estimates-A Square Root Law , 1982 .

[27]  Alexander Keller,et al.  Instant radiosity , 1997, SIGGRAPH.

[28]  Pat Hanrahan,et al.  Photon mapping on programmable graphics hardware , 2003, HWWS '03.

[29]  Philippe Bekaert,et al.  Advanced global illumination , 2006 .

[30]  Michael D. McCool,et al.  Low latency photon mapping using block hashing , 2002, HWWS '02.

[31]  Andrew W. Moore,et al.  Rapid Evaluation of Multiple Density Models , 2003, AISTATS.

[32]  Greg Humphreys,et al.  Physically Based Rendering: From Theory to Implementation , 2004 .

[33]  N.K. Govindaraju,et al.  A Memory Model for Scientific Algorithms on Graphics Processors , 2006, ACM/IEEE SC 2006 Conference (SC'06).

[34]  Niels Jørgen Christensen,et al.  Photon maps in bidirectional Monte Carlo ray tracing of complex objects , 1995, Comput. Graph..

[35]  Hans-Peter Seidel,et al.  Fast Final Gathering via Reverse Photon Mapping , 2005, Comput. Graph. Forum.

[36]  Dinesh Manocha,et al.  Memory - A memory model for scientific algorithms on graphics processors , 2006, SC.

[37]  Philippe Bekaert,et al.  Advanced Global Illumination Course Notes , 2002 .

[38]  Steven Collins,et al.  Adaptive Splatting for Specular to Diffuse Light Transport , 1995 .

[39]  D. W. Scott,et al.  Variable Kernel Density Estimation , 1992 .