High-Performance Ga2O3 Diode Based on Tin Oxide Schottky Contact

A high-performance Schottky diode based on a 600-<inline-formula> <tex-math notation="LaTeX">${\mu }\text{m}$ </tex-math></inline-formula>-thick Cr-doped <inline-formula> <tex-math notation="LaTeX">${\beta }$ </tex-math></inline-formula>-Ga<sub>2</sub>O<sub>3</sub> single crystal has been fabricated using SnO<sub>x</sub> as the Schottky contact. The SnO<sub>x</sub> film was deposited in argon/oxygen mixture gas to ensure an oxygen-rich stoichiometry in Ga<sub>2</sub>O<sub>3</sub> near the Schottky interface, thus reducing oxygen deficiency-related interface state density. The SnO<sub>x</sub> film included three components: Sn, SnO, and SnO<sub>2</sub>, as revealed by X-ray photoelectron spectroscopy characterization. The high-quality Ga<sub>2</sub>O<sub>3</sub> single crystal grown by an edge-defined film-fed method has a carrier concentration of <inline-formula> <tex-math notation="LaTeX">$1.0 \times 10^{18}$ </tex-math></inline-formula> cm<inline-formula> <tex-math notation="LaTeX">$^{-3}$ </tex-math></inline-formula> and an electron mobility of ~90 cm<sup>2</sup>/Vs. The current density–voltage characteristics of the Schottky diode demonstrated high performance with a large barrier height of 1.19 eV, a close-to-unity ideality factor of 1.02, and a high rectification ratio beyond <inline-formula> <tex-math notation="LaTeX">$10^{10}$ </tex-math></inline-formula>. The frequency-dependent capacitance and conductance analysis revealed that the maximum active interface state density is <inline-formula> <tex-math notation="LaTeX">$2.46 \times 10^{12}$ </tex-math></inline-formula> eV<inline-formula> <tex-math notation="LaTeX">$^{-1}$ </tex-math></inline-formula>cm<inline-formula> <tex-math notation="LaTeX">$^{-2}$ </tex-math></inline-formula> at a frequency of 500 kHz.

[1]  Qingpu Wang,et al.  High-Performance Flexible Schottky Diodes Based on Sputtered InGaZnO , 2018, IEEE Transactions on Electron Devices.

[2]  Y. Hao,et al.  Field-Plated Lateral $\beta$ -Ga2O3 Schottky Barrier Diode With High Reverse Blocking Voltage of More Than 3 kV and High DC Power Figure-of-Merit of 500 MW/cm2 , 2018, IEEE Electron Device Letters.

[3]  Saurabh Lodha,et al.  Low-pressure CVD-grown β-Ga2O3 bevel-field-plated Schottky barrier diodes , 2018 .

[4]  Akihiko Furukawa,et al.  Heterojunction p-Cu2O/n-Ga2O3 diode with high breakdown voltage , 2017 .

[5]  Stephen J. Pearton,et al.  High reverse breakdown voltage Schottky rectifiers without edge termination on Ga2O3 , 2017 .

[6]  Akito Kuramata,et al.  First Demonstration of Ga2O3 Trench MOS-Type Schottky Barrier Diodes , 2017, IEEE Electron Device Letters.

[7]  Akito Kuramata,et al.  1-kV vertical Ga2O3 field-plated Schottky barrier diodes , 2017 .

[8]  T. Chow,et al.  Smart Power Devices and ICs Using GaAs and Wide and Extreme Bandgap Semiconductors , 2017, IEEE Transactions on Electron Devices.

[9]  Xutang Tao,et al.  Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics , 2017 .

[10]  Qingpu Wang,et al.  Effects of substrate and anode metal annealing on InGaZnO Schottky diodes , 2017 .

[11]  Lin-Bao Luo,et al.  Graphene‐β‐Ga2O3 Heterojunction for Highly Sensitive Deep UV Photodetector Application , 2016, Advanced materials.

[12]  Qingpu Wang,et al.  Extremely Sensitive Dependence of SnOx Film Properties on Sputtering Power , 2016, Scientific Reports.

[13]  R. Agarwal,et al.  Study of photoconduction properties of CVD grown β-Ga2O3 nanowires , 2016 .

[14]  S. Dhar,et al.  Analysis of temperature dependent forward characteristics of Ni/ ( 2 ¯ 01 ) β-Ga2O3 Schottky diodes , 2016 .

[15]  Qian Xin,et al.  High performance Schottky diodes based on indium-gallium-zinc-oxide , 2016 .

[16]  M. Grundmann,et al.  Comparison of Schottky contacts on β-gallium oxide thin films and bulk crystals , 2015 .

[17]  A. Gümüş,et al.  The source of negative capacitance and anomalous peak in the forward bias capacitance-voltage in Cr/p-si Schottky barrier diodes (SBDs) , 2015 .

[18]  Shingo Saito,et al.  Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy , 2015 .

[19]  A. Song,et al.  Study of breakdown voltage of indium-gallium-zinc-oxide-based Schottky diode , 2015 .

[20]  E. Kamińska,et al.  Enhancement of Ru–Si–O/In–Ga–Zn–O MESFET Performance by Reducing Depletion Region Trap Density , 2015, IEEE Electron Device Letters.

[21]  F. Zhuge,et al.  Structural, chemical, optical, and electrical evolution of SnO(x) films deposited by reactive rf magnetron sputtering. , 2012, ACS applied materials & interfaces.

[22]  Akito Kuramata,et al.  Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates , 2012 .

[23]  S. M. Durbin,et al.  Silver oxide Schottky contacts on n-type ZnO , 2007 .

[24]  Isao Tanaka,et al.  First-principles calculations of native defects in tin monoxide , 2006 .

[25]  Roberto Orlando,et al.  First-principles study of the structural, electronic, and optical properties of Ga 2 O 3 in its monoclinic and hexagonal phases , 2006 .

[26]  Ş. Karataş,et al.  The determination of electronic and interface state density distributions of Au/n-type GaAs Schottky barrier diodes , 2006 .

[27]  A. Rao,et al.  Blueshifted Raman scattering and its correlation with the [110] growth direction in gallium oxide nanowires , 2005 .

[28]  W. A. Hill,et al.  A single-frequency approximation for interface-state density determination , 1980 .

[29]  E. Kamińska,et al.  Flexible IGZO Schottky diodes on paper , 2017 .

[30]  Akito Kuramata,et al.  Gallium oxide ( Ga 2 O 3 ) metal-semiconductor field-effect transistors on single-crystal β-Ga 2 O 3 ( 010 ) substrates , 2013 .

[31]  S. Long,et al.  Schottky Barrier Rectifier Based on ( 100 ) β-Ga 2 O 3 and its DC and AC Characteristics C , 2022 .